Baston, R. J. Quaternionic complexes. (English) Zbl 0764.53022 J. Geom. Phys. 8, No. 1-4, 29-52 (1992). The author studies a quaternion analogue of Dolbeault cohomology obtained by extending the Moisil-Fueter operator from quaternion analysis to a locally exact complex. He uses some Bernstein-Gelfand-Gelfand complexes in representation theory, the Penrose transform and the twistor theory of quaternionic manifolds. The obtained complexes correspond to the semiregular orbits of the Weyl group of \(\text{sl}(2n+2,\mathbb{C})\). In the hyper-Kähler case the author computes the index of these complexes showing that the obtained quaternion cohomology is not trivial. Reviewer: V.Oproiu (Iaşi) Cited in 6 ReviewsCited in 52 Documents MSC: 53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.) 55N30 Sheaf cohomology in algebraic topology 32C35 Analytic sheaves and cohomology groups Keywords:Dolbeault cohomology; Moisil-Fueter operator; Bernstein-Gelfand-Gelfand complexes; quaternion cohomology PDF BibTeX XML Cite \textit{R. J. Baston}, J. Geom. Phys. 8, No. 1--4, 29--52 (1992; Zbl 0764.53022) Full Text: DOI References: [1] Bailey, T. N.; Eastwood, M. G., Complex paraconformal manifolds, their differential geometry and twistor theory, preprint (1988) [2] Baston, R. J., The algebraic construction of invariant differential operators, thesis (1985), Oxford University [3] Baston, R. J., Verma modules and differential conformal invariants, J. Diff. Geom., 32, 851-898 (1990) · Zbl 0732.53011 [4] Baston, R. J., Almost Hermitian symmetric manifolds I: local twistor theory, Duke Math. J., 63, 81-112 (1991) · Zbl 0724.53019 [6] Baston, R. J.; Eastwood, M. G., The Penrose Transform-its Interaction with Representation Theory (1989), Oxford University Press · Zbl 0726.58004 [7] Beauville, A., Variétés Kähleriennes dont la lère classe de Chern est null, J. Diff. Geom., 18, 755-782 (1983) · Zbl 0537.53056 [8] Buchdahl, N. P., On the relative de Rham sequence, (Proc. Am. Math. Soc., 87 (1983)), 363-366 · Zbl 0511.58001 [9] Casian, L. G.; Collingwood, D. H., The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z., 195, 581-600 (1987) · Zbl 0624.22010 [11] Eastwood, M. G., The generalized Penrose-Ward transform, (Math. Proc. Camb. Philos. Soc., 97 (1985)), 165-187 · Zbl 0581.32035 [12] Eastwood, M. G., The Penrose transform for curved ambitwistor space, Quart. J. Math., 39, 427-441 (1988) · Zbl 0664.53031 [13] Eastwood, M. G.; Penrose, R.; Wells, R. O., Cohomology and massless fields, Commun. Math. Phys., 78, 305-351 (1981) · Zbl 0465.58031 [14] Eastwood, M. G.; Rice, J. W., Conformally invariant differential operators on Minkowski space and their curved analogues, Commun. Math. Phys., 109, 207-228 (1987) · Zbl 0659.53047 [15] Enright, T. J.; Shelton, B., Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Am. Math. Soc., 67, no. 367 (1987) · Zbl 0621.17004 [16] Gindikin, S. G., Generalized conformal structures, (Bailey, T. N.; Baston, R. J., Twistors in Mathematics and Physics (1990), Cambridge University Press) · Zbl 0678.53065 [17] Goncharov, A. B., Generalized conformal structures on manifolds, Sel. Math. Sov., 6, 308-340 (1987) · Zbl 0632.53038 [18] Graham, C. R., Non existance of curved conformally invariant operators, preprint (1990) [19] Hiller, H., Geometry of Coxeter Groups, (Research Notes in Mathematics (1982), Pitman: Pitman London) · Zbl 0483.57002 [20] Kobayashi, S., Transformation Groups in Differential Geometry (1972), Springer: Springer Berlin · Zbl 0246.53031 [21] Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math., 74, 329-387 (1961) · Zbl 0134.03501 [22] Kronheimer, P. B., A hyperKählerian structure on coadjoint orbits of a semisimple complex group, preprint (1988) [23] Kulkarni, R. S., On the principle of uniformization, J. Diff. Geom., 13, 109-138 (1978) · Zbl 0381.53023 [24] Manin, Y. I., (Gauge Field Theory and Complex Geometry (1988), Springer: Springer Berlin) [25] Nacinovich, M., Complex analysis and complexes of differential operators, (Lecture Notes in Mathematics 950 (1980), Springer: Springer Berlin) · Zbl 0513.32029 [26] Ochiai, T., Geometry associated with semisimple flat homogeneous spaces, Trans. Am. Math. Soc., 152, 159-193 (1970) · Zbl 0205.26004 [27] Penrose, R.; Rindler, W., Spinors and Space-Time, (Two-Spinor Calculus and Relativistic Fields, Vol. 1 (1984), Cambridge University Press) [28] Salamon, S. M., Differential geometry of quaternionic manifolds, Ann. Sc. Ec. Norm. Sup., 19, 31-55 (1986) · Zbl 0616.53023 [29] Salamon, S. M., Topics in four-dimensional Riemannian geometry, (Geometry Seminar Luigi Bianchi. Geometry Seminar Luigi Bianchi, Lecture Notes in Mathematics 1022 (1983), Springer: Springer Berlin) · Zbl 0532.53035 [30] Vogan, D. A., Unitary Representations of Reductive Lie Groups, (Annals of Mathematical Studies (1987), Princeton University Press) · Zbl 1149.22301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.