zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimative and predictive distances. (English) Zbl 0764.62026
Summary: Methods of estimating distances between members of $(r,r)$ exponential families are considered. The first replaces the parameters in the geodesic distance associated with the information metric by their maximum likelihood estimates. The second is based on the family of predictive densities corresponding to Jeffreys’ invariant prior, using the sufficient statistics as co-ordinates of a Riemannian manifold. In all examples considered, the resulting estimative and predictive distances differ in form by only a simple multiple, the predictive distance being the shorter, and interesting geometrical relationships associated with flatness are also observed. Finally, the effect of the conjugate priors on distances and flatness is considered.

62F10Point estimation
62F15Bayesian inference
Full Text: DOI
[1] Aitchison, J. (1975). Goodness of prediction fit.Biometrika 62, 547--554. · Zbl 0339.62018 · doi:10.1093/biomet/62.3.547
[2] Aitchison, J. and Kay, J. W. (1975). Principles, practice and performance in decision-making in clinical medicine.Proc. 1973 NATO Conference on the Role and Effectiveness of Decision Theory. London: English Universities Press. pp. 252--273.
[3] Amari, S.-I. (1985).Differential--Geometrical Methods in Statistics, Lecture Notes in Statistics28. Berlin: Springer-Verlag.
[4] Atkinson, C. and Mitchell, A. F. S. (1972). Rao’s distance measure. (UnpublishedTech. Rep.) Imperial College, U.K. · Zbl 0534.62012
[5] Atkinson, C. and Mitchell, A. F. S. (1981). Rao’s distance measure.Sankyã A 43, 345--365. · Zbl 0534.62012
[6] Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion).J. Roy. Statist. Soc. B 41, 113--147. · Zbl 0428.62004
[7] Critchley, F., Marriott, P. and Salmon, M. (1992). distances in statistics. Proc.XXXVI Riunione Scientifica, Societa Italiana di Statistica, Rome: CISU, pp. 39--60.
[8] Geisser, S. (1966). Predictive discrimination.Multivariate Analysis. (P. R. Krishnaiah, ed.) New York: Academic Press, pp. 149--163.
[9] Jeffreys, H. (1948)Theory of Probability, Oxford: University Press. · Zbl 0030.16501
[10] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency.Ann. Math. Statist. 22, 525--540. · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[11] Mahalanobis, P. C. (1936). On the generalized distance in statistics.Proc. Nat. Inst. Sci. India A 2, 49--55. · Zbl 0015.03302
[12] Mitchell, A. F. S. and Krzanowski, W. (1985). The Mahalanobis distance and elliptic distributions.Biometrika 72, 464--467. · Zbl 0571.62042 · doi:10.1093/biomet/72.2.464
[13] Mitchell, A. F. S. (1988). Statistical manifolds of univariate elliptic distributions.Internat. Statist. Rev. 56, 1--16. · Zbl 0677.62009 · doi:10.2307/1403358
[14] Mitchell, A. F. S. (1989). The information matrix, skewness tensor and {$\alpha$}-connections for the general multivariate elliptic distribution.Ann. Inst. Statist. Math. 41, 289--304. · Zbl 0691.62049 · doi:10.1007/BF00049397
[15] Murray, G. D. (1977). A note on the estimation of probability density functions.Biometrika 64, 150--152. · Zbl 0347.62035 · doi:10.2307/2335788
[16] Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters.Bull. Calcutta Math. Soc. 37, 81--91. · Zbl 0063.06420
[17] Rao, C. R. (1949). On the distance between two populations.Sankyã 9, 246--248.