Girko, V. L. \(G_{25}\)-estimators of principal components. (English. Russian original) Zbl 0764.62050 Theory Probab. Math. Stat. 40, 1-10 (1990); translation from Teor. Veroyatn. Mat. Stat., Kiev 40, 3-11 (1989). Summary: For the principal components \((h_ k,\xi)\), where the \(h_ k\) are eigenvectors of the covariance matrix \(R\) and \(\xi\) is an \(m_ n\)- dimensional observable random vector, we give Stieltjes transforms, and for these we find \(G\)-estimates under the Kolmogorov condition \(\lim_{n\to\infty} m_ n n^{-1}<1\). We prove the asymptotic normality of these estimates. MSC: 62H25 Factor analysis and principal components; correspondence analysis 62H12 Estimation in multivariate analysis 62F12 Asymptotic properties of parametric estimators Keywords:principal components; eigenvectors; covariance matrix; Stieltjes transforms; \(G\)-estimates; Kolmogorov condition; asymptotic normality PDFBibTeX XMLCite \textit{V. L. Girko}, Theory Probab. Math. Stat. 40, 1--10 (1989; Zbl 0764.62050); translation from Teor. Veroyatn. Mat. Stat., Kiev 40, 3--11 (1989)