×

zbMATH — the first resource for mathematics

A coin tossing algorithm for counting large numbers of events. (English) Zbl 0764.68077
Summary: R. Morris [Commun. ACM 21, 840-842 (1978; Zbl 0386.68035)] has proposed a probabilistic algorithm to count up to \(n\) using only about \(\log_ 2\log_ 2n\) bits. A slightly more general concept is introduced that allows to obtain a smoother average case behaviour. This concept is general enough to cover the analysis of an algorithm where the randomness is simulated by coin tossings.

MSC:
68Q25 Analysis of algorithms and problem complexity
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] ANDREWS G. E.: The Theory of Partitions. Addison Wesley, Reading-Mass, 1976. · Zbl 0371.10001
[2] FLAJOLET P.: Approximate counting: A detailed analysis. BIT 25 (1985), 113-134. · Zbl 0562.68027
[3] FLAJOLET P., SEDGEWICK R.: Digital search trees revisited. SIAM J. Comput. 15 (1986), 748-767. · Zbl 0611.68041
[4] KIRSCHENHOFER P., PRODINGER H.: Approximate counting: An alternative approach. RAIRO Inform. Théor. Appl. 25 (1991), 43-48. · Zbl 0732.68052
[5] KIRSCHENHOFER P., PRODINGER H., SCHOISSENGEIER J.: Zur Auswertung gewisser numerischer Rahen mit Hilfe modularer Funktionen. Zahlentheoretische Analysis II. Lecture Notes in Math 1262 (K. Hlawka, Springer, Berlin, 1987, pp. 108-110.
[6] KNUTH D. E.: The average time for carry propagation. Indag. Math. 40 (1978), 238 -242. · Zbl 0382.10035
[7] MORRIS R.: Counting large numbers of Events in small registers. Comm. ACM 21 (1978), 840-842. · Zbl 0386.68035
[8] NÖRLUND N. E.: Vorlesungen über Differenzenrechnung. Chelsea, New York, 1954. · JFM 50.0315.02
[9] PRODINGER, H: Über längste 0-1-Folgen. Zahlentheoretische Analysis II. Lecture Notes in Math. 1262 (K. Hlawka, Springer, Berlin, 1987, pp. 124-133.
[10] SCHIMID U.: Abzählprobleme der theoretischen Informatik. Diplomarbeit, TU, Wien, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.