On \(Z\)-submonoids and \(Z\)-codes. (English) Zbl 0764.68089

Summary: This paper deals with \(z\)-submonoids and \(z\)-codes. It is shown that the \(z\)-submonoid generated by a \(z\)-code is free. Moreover, a generalization to the \(z\)-codes of the Schützenberger’s theorem regarding maximal and complete codes is given: a recognizable \(z\)-code is a \(z\)-code maximal if it is \(z\)-complete.


68Q45 Formal languages and automata
Full Text: DOI EuDML


[1] 1. M. ANSELMO, Automates et codes zigzag, R.A.l.R.O. Inform. Théor. Appl., 1991, 25, 1, pp. 49-66. Zbl0735.68050 MR1104411 · Zbl 0735.68050
[2] 2. J. BERSTEL and D. PERRIN, Theory of codes, Academic Press, 1985. Zbl0587.68066 MR797069 · Zbl 0587.68066
[3] 3. J. C. BIRGET, Two-way automaton computations, R.A.I.R.O. Inform. Thèor. Appl., 1990, 24, 1, pp. 47-66. Zbl0701.68058 MR1060466 · Zbl 0701.68058
[4] 4. J. P. PÉCUCHET, Automates boustrophédons, langages reconnaissables de mots infinis et variétés de semi-groupes, Thèse d’État, L.I.T.P., mai 1986.
[5] 5. J. P. PÉCUCHET, Automates boustrophédons, semi-groupe de Birget et monoïde inversif libre, R.A.I.R.O. Inform. Thèor. Appl., 1985, 19, 1, pp. 71-100. Zbl0604.68094 MR795773 · Zbl 0604.68094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.