×

Large time behavior of classical \(N\)-body systems. (English) Zbl 0764.70004

Asymptotic properties of solutions of \(N\)-body classical equations are studied. The method developed in quantum systems is applied to the classical case, and the result that every trajectory of an \(N\)-body system possesses an asymptotic velocity is obtained. The author proposes a definition of asymptotic completeness in the classical case and states that it is satisfied if potentials decay faster than any exponential.

MSC:

70F10 \(n\)-body problems
Full Text: DOI

References:

[1] [A] Agmon, S.: Lectures on the exponential decay of solutions of second order elliptic equations. Princeton, NJ: Princeton University Press 1982 · Zbl 0503.35001
[2] [De1] Dereziński, J.: A new proof of the propagation theorem forN-body quantum systems. Commun. Math. Phys.122, 203–231 (1989) · Zbl 0677.47006 · doi:10.1007/BF01257413
[3] [De2] Dereziński, J.: Algebraic approach to theN-body long range scattering. Rev. Math. Phys.3, 1–62 (1991) · Zbl 0726.34071 · doi:10.1142/S0129055X91000023
[4] [De3] Dereziński, J.: Asymptotic completeness of long rangeN-body quantum systems. Preprint, Ecole Polytechnique 1991
[5] [E1] Enss, V.: Quantum scattering theory of two- and three-body systems with potentials of short and long range. In: Schrödinger operators, Graffi, S. (ed.): Lect. Notes in Math., Vol. 1159. Berlin, Heidelberg, New York: Springer 1985 · Zbl 0585.35023
[6] [E2] Enss, V.: Two-and three-body quantum scattering: Completeness revisited. In: Proceedings of the ”Conference on partial differential equations”. Leipzig: Reubner-Texte zur Mathematik, Schulze, B.-W. (ed.), 1989 · Zbl 0699.35215
[7] [Graf] Graf, G.M.: Asymptotic completeness forN-body short range systems: a new proof. Commun. Math. Phys.132, 73–101 (1990) · Zbl 0726.35096 · doi:10.1007/BF02278000
[8] [He] Herbst, I.: Classical scattering with long range forces. Commun. Math. Phys.35, 193–214 (1974) · Zbl 0309.70011 · doi:10.1007/BF01646193
[9] [Hö] Hörmander, L.: The analysis of linear partial differential operators, Vols. 1, 2, 1983 and Vols. 3, 4, 1985. Berlin, Heidelberg, New York: Springer · Zbl 0521.35002
[10] [Hu] Hunziger, W.: TheS-matrix in classical mechanics. Commun. Math. Phys.8, 282–299 (1968) · Zbl 0159.55001 · doi:10.1007/BF01646269
[11] [IKi] Isozaki, H., Kitada, H.: Modified wave operators with time independent modifiers. J. Fac. Sci. Univ. Tokyo, Sec. 1A,32, 77–104 (1985) · Zbl 0582.35036
[12] [Pe] Perry, P.: Scattering theory by the Enss method. London: Harward Academic 1983 · Zbl 0529.35004
[13] [RS] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. III: Scattering theory, 1979 and Vol. IV: Analysis of Operators, 1978. London: Academic Press
[14] [Sig] Sigal, I.M.: On the long range scattering. Duke Math. J.60, 473–492 (1990) · Zbl 0725.35071 · doi:10.1215/S0012-7094-90-06019-3
[15] [SigSof1] Sigal, I.M., Soffer, A.: TheN-particle scattering problem: Asymptotic completeness for short range systems. Anal. Math.125, 35–108 (1987) · Zbl 0646.47009
[16] [SigSof2] Sigal, I.M., Soffer, A.: Local decay and velocity bounds. Preprint, Princeton University 1988
[17] [SigSof3] Sigal, I.M., Soffer, A.: Long range many body scattering. Asymptotic clustering for Coulomb type potentials. Invent. Math.99, 115–143 (1990) · Zbl 0702.35197 · doi:10.1007/BF01234413
[18] [SigSof4] Sigal, I.M., Soffer, A.: Asymptotic completeness for four-body Coulomb systems. Preprint 1991
[19] [Sim] Simon, B.: Wave operators for classical particle scattering. Commun. Math. Phys.23, 37–48 (1971) · Zbl 0238.70012 · doi:10.1007/BF01877595
[20] [Ya] Yafaev, D.R.: Radiation conditions and scattering theory for three-particle Hamiltonians. Preprint, Univ. de Nantes 1991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.