×

Bayesian modeling for a new cure rate model based on the Nielsen distribution. (English) Zbl 07644496

Summary: In this paper, we proposed a new cure rate model based on the Nielsen distribution. This model has a simple form for the probability generating function, it includes as a particular case the logarithmic distribution and it is a proposal recently discussed in greater detail in the literature, so its application within the context of cure models is very attractive. The model is parameterized directly in the cure rate, facilitating the comparison among other cure rate models in the literature also parameterized in this term. The estimation is approached based on a Bayesian paradigm. A real data set is considered to illustrate the performance of our proposal.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Berkson, J. and Gage, R. P. (1952). Survival curve for cancer patients following treatment. Journal of the American Statistical Association 47, 501-515.
[2] Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society, Series B 35, 15-53. · Zbl 0034.08001
[3] Cancho, V., Macera, M., Suzuki, A., Louzada, F. and Zavaleta, K. (2020). A new long-term survival model with dispersion induced by discrete frailty. Lifetime Data Analysis 26, 221-244. · Zbl 1436.62475 · doi:10.1007/s10985-019-09472-2
[4] Cancho, V. G., Castro, M. and Dey, D. (2013a). Long-term survival models with latent activation under a flexible family of distributions. Brazilian Journal of Probability and Statistics 27, 585-600. · Zbl 1298.62165 · doi:10.1214/12-bjps186
[5] Cancho, V. G., Castro, M. and Rodrigues, J. (2012). A Bayesian analysis of the Conway-Maxwell-Poisson cure rate model. Statistical Papers 53, 165-176. · Zbl 1244.62030 · doi:10.1007/s00362-010-0326-5
[6] Cancho, V. G., Louzada, F. and Ortega, E. M. (2013b). The power series cure rate model: An application to a cutaneous melanoma data. Communications in Statistics Simulation and Computation 42, 586-602. · Zbl 1433.62300 · doi:10.1080/03610918.2011.639971
[7] Castellares, F., Lemonte, A. J. and Santos, M. (2020). On the Nielsen distribution. Brazilian Journal of Probability and Statistics 1, 90-111. · Zbl 1441.62055 · doi:10.1214/18-BJPS414
[8] Chen, M.-H., Ibrahim, J. G. and Sinha, D. (1999). A new Bayesian model for survival data with a surviving fraction. Journal of the American Statistical Association 94, 909-919. · Zbl 0996.62019
[9] Chen, M.-H., Shao, Q. M. and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation. New York: Springer. · Zbl 0949.65005 · doi:10.1007/978-1-4612-1276-8
[10] Cordeiro, G. M., Ortega, E. M. and Cunha, D. (2013). The exponentiated generalized class of distributions. Journal of Data Science 11, 1-27.
[11] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. and Knuth, D. E. (1996). On the Lambert \(W\) function. Advances in Computational Mathematics 5, 329-359. · Zbl 0863.65008 · doi:10.1007/BF02124750
[12] Fox, J. (2018) Bayesian Estimation of Regression Models: An Appendix to Fox & Weisberg—an R Companion to Applied Regression, 3rd ed. Last revision: 2018-10-01.
[13] Gallardo, D. and Bourguignon, M. (2021). A note on the nielsen distribution. Brazilian Journal of Probability and Statistics, 788-790. · Zbl 07477285 · doi:10.1214/21-bjps507
[14] Gallardo, D. I., Castro, M. D. and Gómez, H. (2021). An alternative promotion time cure model with overdispersed number of competing causes: An application to melanoma data. Mathematics 15, 1815.
[15] Gallardo, D. I., Gómez, H. and Bolfarine, H. (2017). A new cure rate model based on the Yule-Simon distribution with application to a melanoma data set. Journal of Applied Statistics 44, 1153-1164. · Zbl 1516.62293 · doi:10.1080/02664763.2016.1194385
[16] Gallardo, D. I., Gómez, Y. and Castro, M. D. (2018). A flexible cure rate model based on the polylogarithm distribution. Journal of Statistical Computation and Simulation 88, 2137-2149. · Zbl 07192650 · doi:10.1080/00949655.2018.1451850
[17] Gallardo, D. I., Gómez, Y. G. H. and Castro, M. D. (2020). On the use of the modified power series family of distributions in a cure rate model context. Statistical Methods in Medical Research 29, 1831-1845. · doi:10.1177/0962280219876962
[18] Gelfand, A. E. (1996). Model determination using sampling based methods. In Markov Chain Monte Carlo in Practice (W. Gilks, S. Richardson and D. Spiegelhalter, eds.) 145-161. Boca Raton: Chapman & Hall. · Zbl 0840.62003
[19] Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 147-169. Oxford: Oxford University Press.
[20] Gronau, Q. F., Singmann, H. and Wagenmakers, E.-J. (2020). bridgesampling: An R package for estimating normalizing constants. Journal of Statistical Software 92, 1-29.
[21] Leao, J., Bourguignon, M., Gallardo, D., Rocha, R. and Tomazella, V. (2020). A new cure rate model with flexible competing causes with applications to melanoma and transplantation data. Statistics in Medicine 24, 3272-3284. · Zbl 1546.62431 · doi:10.1002/sim.8664
[22] Lehmann, E. (1953). The power of rank tests. The Annals of Mathematical Statistics 24, 23-43. · Zbl 0050.14702 · doi:10.1214/aoms/1177729080
[23] McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Texts in Statistical Science, 2nd ed. Boca Raton: CRC Press.
[24] R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
[25] Rodrigues, J., Cancho, V. G., Castro, M. and Louzada-Neto, F. (2009b). On the unification of the long-term survival models. Statistics & Probability Letters 79, 753-759. · Zbl 1349.62485 · doi:10.1016/j.spl.2008.10.029
[26] Rodrigues, J., Castro, M., Cancho, V. G. and Balakrishnan, N. (2009a). COM-Poisson cure rate survival model and an application to a cutaneous melanoma data. Journal of Statistical Planning and Inference 139, 3605-3611. · Zbl 1173.62074 · doi:10.1016/j.jspi.2009.04.014
[27] Scheike, T. H. and Martinussen, T. (2006). Dynamic Regression Models for Survival Data. NY: Springer. · Zbl 1096.62119
[28] Scheike, T. H. and Zhang, M.-J. (2011). Analyzing competing risk data using the R timereg package. Journal of Statistical Software 38, 1-15.
[29] Sinha, D., Chen, M.-H. and Ghosh, S. (1999). Bayesian analysis and model selection for interval-censored survival data. Biometrics 55, 585-590. · Zbl 1059.62715 · doi:10.1111/j.0006-341X.1999.00585.x
[30] Stan Development Team (2021a). RStan: the R interface to Stan. R package version 2.26.4.
[31] Stan Development Team (2021b). Stan modeling language users guide and reference manual. Version 2.28.
[32] Tsodikov, A. D., Ibrahim, J. G. and Yakovlev, A. Y. (2003). Estimating cure rates from survival data: An alternative to two-component mixture models. Journal of the American Statistical Association 98, 1063-1078.
[33] Williams, J. and Lagakos, S. (1977). Models for censored survival analysis: Constant-sum and variable-sum models. Biometrika 64, 215-224. · Zbl 0366.92009 · doi:10.1093/biomet/64.2.215
[34] Yakovlev, A. Y. and Tsodikov, A. D. (1996). Stochastic Models of Tumor Latency and Their Biostatistical Applications. Singapore: World Scientific · Zbl 0919.92024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.