Delange, Hubert; Tenenbaum, Gérald A theorem on Dirichlet series. (Un théorème sur les séries de Dirichlet.) (French) Zbl 0765.30002 Monatsh. Math. 113, No. 2, 99-105 (1992). We consider \(k\) Dirichlet series \(\sum a_ j(n)n^{-s}\) (\(1\leq j\leq k\)), \(k\geq 2\). We suppose that for each \(j\) the series \(\sum a_ j(n)n^{-s}\) converges for \(s=s_ j=\sigma_ j+it_ j\), and that \(\text{Max }\sigma_ j-\text{Min }\sigma_ j<1/(k-1)\). We prove that the (Dirichlet) product of these series converges uniformly on every bounded segment of the line \(\text{Re s}=(\sigma_ 1+\dots+\sigma_ k)/k+1-1/k\) and we give an information on the rapidity of convergence. The number \(1-1/k\) cannot be replaced by a smaller one. Reviewer: H.Delange Cited in 2 Documents MSC: 30B50 Dirichlet series, exponential series and other series in one complex variable 11M41 Other Dirichlet series and zeta functions Keywords:Dirichlet product of series; convergence; uniform convergence; Dirichlet series PDF BibTeX XML Cite \textit{H. Delange} and \textit{G. Tenenbaum}, Monatsh. Math. 113, No. 2, 99--105 (1992; Zbl 0765.30002) Full Text: DOI EuDML