zbMATH — the first resource for mathematics

Resolution of the cohomology comparison problem for amenable Banach algebras. (English) Zbl 0765.46028
Let \(M\) be a Banach bimodule over a complex Banach algebra \(A\). From the early days of the Banach algebra cohomology up to this day, virtually nothing has been known about the comparison map for the higher cohomology groups. The purpose of this paper is to resolve this question for arbitrary amenable Banach algebras. The following result is given in this paper: If \(\text{card }A=\aleph_ n\) then, for every Banach bimodule \(M\) and any \(q\geq n+3\), the comparison map \(i^ q: {\mathcal H}^ q(A,M)\to H^ q(A,M)\) is zero.

46H05 General theory of topological algebras
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
Full Text: DOI EuDML
[1] Badé, W.G., Curtis, Jr., P.C.: The continuity of derivations of Banach algebras. J. Funct. Anal.16, 372-387 (1974) · Zbl 0296.46049 · doi:10.1016/0022-1236(74)90056-1
[2] Bernstein, F.: Untersuchungen aus der Mengenlehre. Math. Ann.61, 117-155 (1905) · JFM 36.0098.03 · doi:10.1007/BF01457734
[3] Cartan, H., Eilenberg, S.: Homological algebra. Princeton: Princeton University Press 1960 · Zbl 0933.18001
[4] Cohen, P.J.: Set theory and the Continuum Hypothesis. New York Amsterdam: Benjamin 1966 · Zbl 0182.01301
[5] Dales, H.G.: Automatic continuity: A survey. Bull. Lond. Math. Soc.10, 129-183 (1978) · Zbl 0391.46037 · doi:10.1112/blms/10.2.129
[6] Goblot, R.: Sur les dérivés de certaines limites projectives. Applications aux modules. Bull. Sci. Math., II. Sér.94, 251-255 (1970) · Zbl 0222.13018
[7] Guichardet, A.: Sur l’homologie et la cohomologie des algebres de Banach. C.R. Acad. Sci. Paris, Sér. I.262, A38-41 (1966) · Zbl 0131.13101
[8] Hewitt, E.: The ranges of certain convolution operators. Math. Scand.15, 147-155 (1964) · Zbl 0135.36002
[9] Johnson, B.E.: Cohomology in Banach algebras. Mem. Am. Math. Soc.127 (1972) · Zbl 0256.18014
[10] Johnson, B.E.: Approximate diagonals and cohomology of certain annihilator Banach algebras. Am. J. Math.94, 685-698 · Zbl 0246.46040
[11] Kamowitz, H.: Cohomology groups of commutative Banach algebras. Trans. Am. Math. Soc.102, 352-372 (1962) · Zbl 0114.31703 · doi:10.1090/S0002-9947-1962-0170219-7
[12] Khelemskiî, A. Ya.: Homology in Banach and topological algebras (in Russian). Moscow: Moscow University Press 1986
[13] Osofsky, B.: Upper bounds on homological dimensions. Nagoya Math. J.32, 315-322 (1968) · Zbl 0162.05102
[14] Ringrose, J.R.: Automatic continuity of derivations of operator algebras. J. Lond. Math. Soc.5, 432-438 (1972) · Zbl 0245.46084 · doi:10.1112/jlms/s2-5.3.432
[15] Scheinberg, M. V.: Homological properties of closed ideals possessing a bounded approximate unit (in Russian). Vestnik Moskovskogo Univ.27:4, 39-45 (1972)
[16] Scheinberg, M.V.: On the relative homological dimension of the group algebras of locally compact groups (in Russian). Izv. Akad. Nauk SSSR Ser. Mat.37, 308-318 (1973)
[17] Wodzicki, M.: Homological properties of rings of functional-analytic type. Proc. Natl. Acad. Sci. USA87, 4910-4911 (1990) · Zbl 0717.46063 · doi:10.1073/pnas.87.13.4910
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.