Lii, Keh-Shin; Rosenblatt, Murray An approximate maximum likelihood estimation for non-Gaussian non-minimum phase moving average processes. (English) Zbl 0765.62082 J. Multivariate Anal. 43, No. 2, 272-299 (1992). Summary: An approximate maximum likelihood procedure is proposed for the estimation of parameters in possibly nonminimum phase (noninvertible) moving average processes driven by independent and identically distributed non-Gaussian noise. Under appropriate conditions, parameter estimates that are solutions of likelihood-like equations are consistent and are asymptotically normal. A simulation study for MA(2) processes illustrates the estimation procedure. Cited in 1 ReviewCited in 16 Documents MSC: 62M09 Non-Markovian processes: estimation 62E20 Asymptotic distribution theory in statistics 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) Keywords:spectral density; consistency; asymptotic normality; noninvertible; approximate maximum likelihood procedure; nonminimum phase; moving average processes; independent and identically distributed non-Gaussian noise; solutions of likelihood-like equations; simulation study; MA(2) processes × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bartelt, H.; Lohmann, A.; Wirnitzer, B., Phase and amplitude recovery from bispectra, Appl. Opt., 23, 3121-3129 (1984) [2] Basor, E.; Helton, J. W., A new proof of the Szegö limit theorem and new results for Toeplitz operators with discontinuous symbol, J. Operator Theory, 3, 23-29 (1980) · Zbl 0439.47023 [3] Böttcher, A.; Silverman, B., (Analysis of Toeplitz Operators (1990), Springer: Springer Berlin) · Zbl 0732.47029 [4] Breidt, F. J.; Davis, R. A.; Lii, K. S.; Rosenblatt, M., Maximum likelihood estimation for noncausal autoregressive processes, J. Multivariate Anal., 36, 175-198 (1991) · Zbl 0711.62072 [5] Donoho, D., On minimum entropy deconvolution, (Findley, D. F., Applied Time Series Analysis (1981)), 565-608 · Zbl 0481.62075 [6] Kreiss, J., On adaptive estimation in stationary ARMA processes, Ann. Statist., 15, 112-133 (1987) · Zbl 0616.62042 [7] Lehmann, E. L., (Theory of Point Estimation (1983), Wiley: Wiley New York) · Zbl 0522.62020 [8] Lii, K. S.; Rosenblatt, M., Deconvolution and estimation of transfer function phase and coefficients for non-Gaussian linear processes, Ann. Statist., 10, 1195-1208 (1982) · Zbl 0512.62090 [9] Lohmann, A.; Weigelt, G.; Wirnitzer, B., Speckle masking in astronomy: Triple correlation theory and applications, Appl. Opt., 23, 3121-3129 (1983) [10] Matsuoka, T.; Ulrych, T., Phase estimation using the bispectrum, (Proc. IEEE, 72 (1984)), 1403-1411 [11] Nikias, C. L.; Raghuveer, M. R., Bispectrum estimation: A digital signal processing framework, (Proc. IEEE, 75 (1987)), 869-891 [12] Rosenblatt, M., (Stationary Sequences and Random Fields (1985), Birkhäuser: Birkhäuser Boston) · Zbl 0597.62095 [13] (Proceedings of the International Signal Processing Workshop on Higher Order Statistics. Proceedings of the International Signal Processing Workshop on Higher Order Statistics, Chamrousse, France (1991)) [14] Wiggins, R. A., Minimum entropy deconvolution, Geoexploration, 17, 21-35 (1978) [15] Wiggins, R. A., Entropy guided deconvolution, Geophysics, 50, 2710-2716 (1985) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.