zbMATH — the first resource for mathematics

Approximation of the three-field Stokes system via optimized quadrilateral finite elements. (English) Zbl 0765.76053
Summary: In a recent paper the first two authors showed that a convenient choice of “bubble tensors” leads to a significant reduction of the number of degrees of freedom needed to define finite element spaces for the extra stresses, suitable for the solution of viscoelastic flow problems. In this context specialists’ usual guiding criterion is a stable and accurate approximation of the underlying linear problem: the three-field Stokes system. Keeping this in view, a new element for the approximation of this problem following the same ideas is presented. Some computer tests illustrate the potentialities of the new methods.

76M10 Finite element methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
Full Text: DOI EuDML
[1] R. A. ADAMS, Sobolev Spaces, Academic Press N. Y., 1968. Zbl1098.46001 MR450957 · Zbl 1098.46001
[2] R. B. BlRD, R. C. ARMSTRONG and O. HASSAGER, Dynamics of polymeric liquids, Vol 1, Fluid Mechanics, Second Edition, John Wiley & Sons, N. Y., 1987.
[3] J. BARANGER and D. SANDRI, Approximation par element finis d’écoulements de fluides viscoélastiques Existence de solutions approchées et majorations d’erreur I Contraintes continues, C. R. Acad. Sci. Paris, Tome 312, Série I (1991), 541-544. Zbl0718.76010 MR1099689 · Zbl 0718.76010
[4] [4] M. BERCOVIER and O. PIRONNEAU, Error estimates for the finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979), 211-224. Zbl0423.65058 MR549450 · Zbl 0423.65058 · doi:10.1007/BF01399555 · eudml:132638
[5] J. H. CARNEIRO DE ARAÚJO, Métodos de Elementos Finitos Otimizados para o Sistema de Stokes Associado a Problemas de Viscoelasticidade, Doctoral dissertation, Pontificia Universidade Católica do Rio de Janeiro, 1991.
[6] M. S. ENGELMAN, R. L. SANI, P. M. GRESHO and M. BERCOVIER, Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements, Int. J. Num. Methods in Fluids, 2 (1982), 25-42. Zbl0483.76013 MR643172 · Zbl 0483.76013 · doi:10.1002/fld.1650020103
[7] M. FORTIN and A. FORTIN, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32 (1989) 295-310. Zbl0672.76010 · Zbl 0672.76010 · doi:10.1016/0377-0257(89)85012-8
[8] M. FORTIN and R. PIERRE, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech, Engrg, 73 (1989) 341-350. Zbl0692.76002 MR1016647 · Zbl 0692.76002 · doi:10.1016/0045-7825(89)90073-X
[9] J. M. MARCHAL and M. CROCHET, A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26 (1987) 77-117. Zbl0637.76009 · Zbl 0637.76009 · doi:10.1016/0377-0257(87)85048-6
[10] V. RUAS, An optimal three-field finite element approximation of the Stokes system with continuous extra stresses (to appear). Zbl0797.76045 MR1266524 · Zbl 0797.76045 · doi:10.1007/BF03167217
[11] V. RUAS, A convergent three-field quadrilatéral finite element method for simulating viscoelastic flow on irregular meshes. Revue Européenne des Eléments Finis, Vol. 1, 4 (1992), 391-406. Zbl0924.76060 MR1266524 · Zbl 0924.76060
[12] V. RUAS and J. H. CARNEIRO DE ARAÚJO, Un método mejorado de segundo orden para la simulación de flujo viscoelástico con elementos finitos quadrilaterales, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol. 8, 1 (1992), 77-85. MR1160319
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.