## The use of fuzzy outranking relations in preference modelling.(English)Zbl 0765.90003

This paper deals with preference modelling in the context of decision aid. In order to tackle this problem, a multiple criteria methodology is proposed, mainly based on fuzzy outranking relations introduced both at one-dimensional and multi-dimensional levels. Such relations are then combined using fuzzy logical connectives to generate relational systems of fuzzy preferences.

### MSC:

 91B06 Decision theory 03E72 Theory of fuzzy sets, etc. 91B08 Individual preferences

ELECTRE
Full Text:

### References:

 [1] Alsina, C.; Trillas, E.; Valverde, L., On some logical connectives for fuzzy set theory, J. math. anal. appl., 93, 15-26, (1983) · Zbl 0522.03012 [2] Bana e Costa, A., A methodology for sensitivity analysis in three-criteria problems: A case study in municipal management, European J. oper. res., 33, 159-173, (1988) [3] Bouyssou, D., Modelling inaccurate determination, uncertainty, imprecision using multiple criteria, (), 78-87 [4] Brans, J.P.; Mareschal, B.; Vincke, Ph., PROMETHEE: A new family of outranking methods in multicriteria analysis, (), 408-421 · Zbl 0571.90042 [5] Dombi, J., A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy sets and systems, 8, 150-163, (1982) · Zbl 0494.04005 [6] Dubois, D.; Prade, H., Ranking fuzzy numbers in the setting of possibility theory, Inform. sci., 30, 2, 183-224, (1983) · Zbl 0569.94031 [7] Dubois, D.; Prade, H., Théorie des possibilités, (1985), Masson Paris [8] Freeling, A.N.S., Fuzzy sets and decision analysis, IEEE trans. systems man cybernet., 10, 341-354, (1980) [9] Jacquet-Lagreze, E., Binary preference indices: A new look on multicriteria aggregation procedures, European J. oper. res., 10, 26-32, (1982) · Zbl 0481.90003 [10] Martel, J.M.; D’Avignon, G.; Couillard, M., A fuzzy outranking relation in multicriteria decision making, European J. oper. res., 25, 258-271, (1986) · Zbl 0587.90059 [11] Matarazzo, B., Multicriterion analysis by means of pairwise actions and criterion comparisons (MAPPAC), Appl. math. comput., 18, 2, 119-141, (1986) · Zbl 0592.90051 [12] Monjardet, B., Axiomatiques et propriétés des quasi-ordres, Mathématiques et sciences humaines, 63, 51-82, (1978) · Zbl 0417.06005 [13] Orlovski, S.A., Decision-making with a fuzzy preference relation, Fuzzy sets and systems, 1, 155-167, (1978) · Zbl 0396.90004 [14] Ovchinnikov, S., Means and social welfare functions in fuzzy binary relations spaces, (), 143-154 [15] Ovchinnikov, S.; Roubens, M., On strict preference relations, Fuzzy sets and systems, 43, 319-326, (1991) · Zbl 0747.90006 [16] Ovchinnikov, S.; Roubens, M., On fuzzy strict preference, indifference and incomparability relations, Fuzzy sets and systems, 49, 15-20, (1992), (this issue) · Zbl 0768.90005 [17] Perny, P., Relational systems of fuzzy preferences, construction and exploitation of relational systems of fuzzy preferences, () [18] Ponsard, C., Spatial fuzzy Consumer’s decision making: A multicriteria analysis, European J. oper. res., 25, 235-246, (1986) · Zbl 0601.90006 [19] Roberts, F.S., Homogeneous family of semi-orders and the theory of probabilistic consistency, J. math. psych., 8, 248-263, (1971) · Zbl 0223.92017 [20] Roubens, M.; Vincke, Ph., Preference modelling, lecture notes in economics and mathematical systems, (1985), Springer-Verlag Berlin, No. 250 [21] Roubens, M.; Vincke, Ph., Fuzzy possibility graphs and their application to ranking fuzzy numbers, (), 119-128, No. 30 [22] Roy, B., ELECTRE III: un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples, Cahiers du centre d’etudes de recherche opérationnelle, 20, 1, 3-24, (1978) · Zbl 0377.90003 [23] Roy, B., Main sources of inaccurate determination, uncertainty and imprecision in decision models, (), 43-62 [24] Roy, B., The outranking approach and the foundations of electre methods, Theory and decision, 31, 1, 49-73, (1991) [25] Roy, B.; Vincke, Ph., Relational systems of preference with one or more pseudo-criteria: some new concepts and results, Management sci., 30, 11, 1323-1335, (1984) · Zbl 0555.90002 [26] Roy, B.; Présent, M.; Silhol, D., A programming method for determining which Paris metro stations should be renovated, Euorpean J. oper. res., 24, 318-334, (1986) [27] Roy, B.; Vincke, Ph., Pseudo-orders: definition, properties and numerical representation, Math. social sci., 14, 263-274, (1987) · Zbl 0628.90001 [28] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), North-Holland Amsterdam · Zbl 0546.60010 [29] Trillas, E., Sobre funciones de negacion en la teoria de conjunctos diffusos, Stochastica, 3, 47-59, (1979) [30] Vansnick, J.C., On the problem of weights in multiple criteria decision making (the noncompensatory approach), European J. oper. res., 24, 288-294, (1986) · Zbl 0579.90059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.