Genesio, R.; Tesi, A. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. (English) Zbl 0765.93030 Automatica 28, No. 3, 531-548 (1992). Summary: The paper considers the problem of determining the conditions under which a nonlinear dynamical system can give rise to a chaotic behaviour. On the basis of the harmonic balance principle, which is widely used in the frequency analysis of nonlinear control systems, two practical methods are presented for predicting the existence and the location of chaotic motions. This is formulated as a function of the system parameters, when the system structure is fixed by rather general input-output or state equation models. Several examples of application are presented to show the rather straightforward computations involved in the proposed methods, the kind of results which can be obtained and, due to the heuristic approach to the problem, their corresponding approximation. Cited in 1 ReviewCited in 137 Documents MSC: 93C10 Nonlinear systems in control theory 93C15 Control/observation systems governed by ordinary differential equations 93B52 Feedback control Keywords:harmonic balance principle; chaotic motions PDF BibTeX XML Cite \textit{R. Genesio} and \textit{A. Tesi}, Automatica 28, No. 3, 531--548 (1992; Zbl 0765.93030) Full Text: DOI References: [1] Amrani, D.; Atherton, D. P., Designing autonomous relay systems with chaotic motion, (Proc. 28th IEEE Conf. on Decision and Control. Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL (1989)), 512-517 [2] Atherton, D. P., (Nonlinear Control Engineering (1975), Van Nostrand Reinhold: Van Nostrand Reinhold London) [3] Atherton, D. P., (Stability of Nonlinear Systems (1981), Research Study: Research Study Chichester) · Zbl 0515.93001 [4] Ballieul, J.; Brockett, R. W.; Wahburn, R. B., Chaotic motion in nonlinear feedback systems, IEEE Trans. on Circ. Syst., CAS-27, 990-997 (1980) · Zbl 0499.93025 [5] Brockett, R. W., On conditions leading to chaos in feedback systems, (Proc. 21st IEEE Conf. on Decision and Control. Proc. 21st IEEE Conf. on Decision and Control, Orlando, FL (1982)), 932-936 [6] Chua, L. O.; Komuro, M.; Matsumoto, T., The double scroll family, IEEE Trans. on Circ. Syst., CAS-33, 1072-1118 (1986) · Zbl 0634.58015 [7] (Chua, L. O., Special issue on chaotic systems. Special issue on chaotic systems, Proc. of the IEEE, 75 (1987)) [8] Cook, P. A., Simple feedback systems with chaotic behaviour, Syst. and Control Letters, 6, 223-227 (1985) · Zbl 0569.93059 [9] Cook, P. A., (Nonlinear Dynamical Systems (1986), Prentice-Hall: Prentice-Hall London) [10] (Degn, M.; Holden, A. V.; Olsen, L. F., Chaos in Biological Systems, Vol. 138 (1987), Plenum Press: Plenum Press New York), NATO ASI Series [11] Devaney, E., (An Introduction to Chaotic Dynamical Systems (1986), Addison-Wesley: Addison-Wesley Redwood City) · Zbl 0632.58005 [12] Diop, S., Elimination in control theory, Math. Control, Signals, Syst., 5, 17-32 (1991) · Zbl 0727.93025 [13] Genesio, R.; Tesi, A., Chaos prediction in nonlinear feedback systems, (IEE Proc. D, 138 (1991)), 313-320 · Zbl 0754.93024 [14] Genesio, R.; Tesi, A., A harmonic balance approach for chaos prediction: the Chua’s circuit, Int. J. of Bifurcation and Chaos, 2 (1992), To appear · Zbl 0874.94042 [15] Guckenheimer, J.; Holmes, P., (Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983), Springer-Verlag: Springer-Verlag New York) · Zbl 0515.34001 [16] Hayashi, C., (Nonlinear Oscillations in Physical Systems (1964), Princeton University Press: Princeton University Press Princeton) · Zbl 0192.50605 [17] (Holden, A. V., Chaos (1986), Manchester University Press: Manchester University Press Manchester) · Zbl 0743.58005 [18] Jordan, D. N.; Smith, P., (Nonlinear Ordinary Differential Equations (1987), Clarendon Press: Clarendon Press Oxford) · Zbl 0417.34002 [19] Mareels, I. M.Y.; Bitmead, R. R., Bifurcation effects in robust adaptive control, IEEE Trans. on Circ. Syst., CAS-35, 835-841 (1988) · Zbl 0658.93050 [20] (Matsumoto, T.; Salam, F. M.A., Special Issue on Chaos and Bifurcations of Circuits and Systems. Special Issue on Chaos and Bifurcations of Circuits and Systems, IEEE Trans. on Circ. Syst., CAS-35 (1988)), 7 [21] Mees, A. I., (Dynamics of Feedback Systems (1981), John Wiley: John Wiley New York) · Zbl 0454.93003 [22] Mees, A. I., Describing functions: ten years on, IMA J. appl. Math., 32, 221-233 (1984) · Zbl 0543.93029 [23] Mees, A. I., Chaos in feedback systems, (Holden, Chaos (1986), Manchester University Press: Manchester University Press Manchester), 99-110 · Zbl 0395.92014 [24] Ogorzalek, M. J., Some observations on chaotic motion in single loop feedback system, (Proc. 28th IEEE Conf. on Decision and Control. Proc. 28th IEEE Conf. on Decision and Control, Athens (Greece) (1986)), 588-589 [25] Parker, T. S.; Chua, L. O., The dual double scroll equation, IEEE Trans. on Circ. Syst., CAS-34, 1059-1073 (1987) · Zbl 0641.58030 [26] Šiljak, D. D., (Nonlinear Systems: the Parameter Analysis and Design (1969), John Wiley: John Wiley New York) · Zbl 0194.39302 [27] Sparrow, C. T., (The Lorenz Equations: Bifurcation, Chaos and Strange Attractors (1982), Springer-Verlag: Springer-Verlag New York) [28] Thompson, J. M.T.; Stewart, H. B., (Nonlinear Dynamics and Chaos (1986), John Wiley: John Wiley New York) · Zbl 0601.58001 [29] Vidyasagar, M., (Nonlinear System Analysis (1978), Prentice-Hall: Prentice-Hall Englewood Cliffs) [30] Wiggins, S., (Global Bifurcations and Chaos (1988), Springer-Verlag: Springer-Verlag New York) · Zbl 0661.58001 [31] Willems, J. C., (The Analysis of Feedback Systems (1971), MIT Press: MIT Press Cambridge) · Zbl 0244.93048 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.