×

The Massey vanishing conjecture for number fields. (English) Zbl 1521.11070

Higher Massey products are invariants of a differential graded ring that do not factor through its cohomology. As such, they detect differences that are usually not seen by classical cohomological methods. The original example studied by Massey was that of the complement in \(\mathbb{R}^3\) of the Borromean ring configuration [W. S. Massey, in: Conf. algebr. Topol., Univ. Ill. Chicago Circle 1968, 174–205 (1969; Zbl 0212.55904); W. S. Massey, J. Knot Theory Ramifications 7, No. 3, 393–414 (1998; Zbl 0911.57009)]. Here, cohomology with coefficients in \(\mathbb{Z}\) is not able to detect the difference between this space and the complement of three completely unlinked rings, but higher Massey products in the corresponding differential complex do capture the essence of this nontrivial configuration.
These constructions were later studied in a more arithmetic context, considering étale cohomology of open subschemes of spectra of Dedekind rings, and finally taken to the “simpler” context of Galois cohomology with coefficients in \(\mathbb{F}_p\), where \(p\) is a prime number. Here, a higher Massey product takes classes \(\alpha_1,\ldots,\alpha_n\in H^1(k,\mathbb{F}_p)\), with \(n\geq 3\), and gives back a subset of \(H^2(k,\mathbb{F}_p)\), which could eventually be empty. It is in this context that Mináč and Tân conjectured that higher Massey products over an arbitrary field \(k\) contain the trivial class \(0\in H^2(k,\mathbb{F}_p)\) as soon as they are non-empty (in which case one says that the product vanishes). This is now known as the Massey vanishing conjecture.
In this article, the authors prove that the Massey vanishing conjecture holds for number fields (cf. Theorem 1.3). This was known to be true when \(n=3\) (and for an arbitrary field \(k\), cf. for instance [J. Mináč and N. D. Tân, J. Lond. Math. Soc., II. Ser. 94, No. 3, 909–932 (2016; Zbl 1378.12002)]) and for \(n=4\) and \(p=2\) [P. Guillot et al., Compos. Math. 154, No. 9, 1921–1959 (2018; Zbl 1455.12005)]; otherwise the question was completely open. This is thus a great breakthrough that hinges on:
a translation of this conjecture in terms of embedding problems, due to W. G. Dwyer [J. Pure Appl. Algebra 6, 177–190 (1975; Zbl 0338.20057)];
a translation of embedding problems in terms of homogeneous spaces of \(\mathrm{SL}_n\), due to A. Pál and T. M. Schlank [Int. J. Number Theory 18, No. 7, 1535–1565 (2022; Zbl 1500.12005)];
recent developments by the authors of this paper in the study of the Brauer-Manin obstruction to the local-global principle for homogeneous spaces with finite supersolvable stabilizers [Y. Harpaz and O. Wittenberg, J. Am. Math. Soc. 33, No. 3, 775–805 (2020; Zbl 1469.14053)]; and
known results on the Massey vanishing conjecture over local fields [J. Mináč and N. D. Tân, J. Eur. Math. Soc. (JEMS) 19, No. 1, 255–284 (2017; Zbl 1372.12004)] and refinements of these by the authors of this paper (cf. in particular Proposition 5.3).

More precisely, given classes \(\alpha_1,\ldots,\alpha_n\in H^1(k,\mathbb{F}_p)\), the first two tools provide a homogeneous space \(V\) of \(\mathrm{SL}_n\) with finite geometric stabilizers that is a splitting variety for the vanishing of the corresponding Massey product (cf. Proposition 2.5). This means that \(V(L)\neq\emptyset\) if and only if the Massey product vanishes when restricted to \(H^2(L,\mathbb{F}_p)\). Since the stabilizers of this homogeneous space turn out to be supersolvable, this enables the authors to apply their machinery on the Brauer-Manin obstruction and thus concentrate on whether this homogeneous space has local points (which it does, as a nice consequence of local duality) and whether these local points define adelic points that are orthogonal to the unramified Brauer group \(\mathrm{Br}_{\mathrm{nr}}(V)\). This second part requires delicate computations of the group \(\mathrm{Br}_{\mathrm{nr}}(V)\), which rely on the explicit description of the stabilizers of this homogeneous space and on previous results by F. A. Bogomolov (for the “geometric” part of the Brauer group, [Math. USSR, Izv. 30, No. 3, 455–485 (1988; Zbl 0679.14025); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 51, No. 3, 485–516 (1987)]) and by Harari, Demarche and Lucchini Arteche (for the “algebraic” part, cf. [D. Harari, Bull. Soc. Math. Fr. 135, No. 4, 549–564 (2007; Zbl 1207.11048); C. Demarche, Math. Ann. 346, No. 4, 949–968 (2010; Zbl 1297.14022); G. Lucchini Arteche, J. Algebra 411, 129–181 (2014; Zbl 1368.14033)]).
The last two sections of the article (6 and 7) are devoted to further computations of Brauer groups of these splitting varieties in particular cases, as well as generalizations of the Massey vanishing conjecture to cohomology with other coefficients (i.e., different from \(\mathbb{F}_p\)) for which the same methods apply.

MSC:

11R34 Galois cohomology
12G05 Galois cohomology
14M17 Homogeneous spaces and generalizations
14G05 Rational points
55S30 Massey products

References:

[1] E. ARTIN and J. TATE, Class field theory, AMS Chelsea Publishing, Providence, RI, 2009, reprinted with corrections from the 1967 original. · Zbl 1179.11040 · doi:10.1090/chel/366
[2] F. A. BOGOMOLOV, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 485-516, English translation in Math. USSR-Izv. 30 (1988), no. 3, 455-485. · Zbl 0679.14025 · doi:10.1070/IM1988v030n03ABEH001024
[3] J.-L. COLLIOT-THÉLÈNE and B. POONEN, Algebraic families of nonzero elements of Shafarevich-Tate groups, J. Amer. Math. Soc. 13 (2000), no. 1, 83-99. · Zbl 0951.11022 · doi:10.1090/S0894-0347-99-00315-X
[4] J.-L. COLLIOT-THÉLÈNE and A. N. SKOROBOGATOV, The Brauer-Grothendieck group, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 71, Springer, Cham. · Zbl 1490.14001 · doi:10.1007/978-3-030-74248-5
[5] C. DEMARCHE, Groupe de Brauer non ramifié d’espaces homogènes à stabilisateurs finis, Math. Ann. 346 (2010), no. 4, 949-968. · Zbl 1297.14022 · doi:10.1007/s00208-009-0415-8
[6] C. DEMARCHE and G. LUCCHINI ARTECHE, Le principe de Hasse pour les espaces homogènes: réduction au cas des stabilisateurs finis, Compositio Math. 155 (2019), no. 8, 1568-1593. · Zbl 1504.14040 · doi:10.1112/s0010437x19007395
[7] C. DEMARCHE, G. LUCCHINI ARTECHE, and D. NEFTIN, The Grunwald problem and approximation properties for homogeneous spaces, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 3, 1009-1033. · Zbl 1441.11283
[8] W. G. DWYER, Homology, Massey products and maps between groups, J. Pure Appl. Algebra 6 (1975), no. 2, 177-190. · Zbl 0338.20057 · doi:10.1016/0022-4049(75)90006-7
[9] I. EFRAT, The Zassenhaus filtration, Massey products, and representations of profinite groups, Adv. Math. 263 (2014), 389-411. · Zbl 1346.20027 · doi:10.1016/j.aim.2014.07.006
[10] I. EFRAT and E. MATZRI, Triple Massey products and absolute Galois groups, J. Eur. Math. Soc. 19 (2017), no. 12, 3629-3640. · Zbl 1425.12004 · doi:10.4171/JEMS/748
[11] P. GUILLOT and J. MINÁČ, Extensions of unipotent groups, Massey products and Galois theory, Adv. Math. 354 (2019), 106748, 40. · Zbl 1447.12001 · doi:10.1016/j.aim.2019.106748
[12] P. GUILLOT, J. MINÁČ, and A. TOPAZ, Four-fold Massey products in Galois cohomology, with an appendix by O. Wittenberg, Compos. Math. 154 (2018), no. 9, 1921-1959. · Zbl 1455.12005 · doi:10.1112/s0010437x18007297
[13] D. HARARI, Quelques propriétés d’approximation reliées à la cohomologie galoisienne d’un groupe algébrique fini, Bull. Soc. Math. France 135 (2007), no. 4, 549-564. · Zbl 1207.11048 · doi:10.24033/bsmf.2545
[14] M. J. HOPKINS and K. G. WICKELGREN, Splitting varieties for triple Massey products, J. Pure Appl. Algebra 219 (2015), no. 5, 1304-1319. · Zbl 1323.55014 · doi:10.1016/j.jpaa.2014.06.006
[15] Y. HARPAZ and O. WITTENBERG, Zéro-cycles sur les espaces homogènes et problème de Galois inverse, J. Amer. Math. Soc. 33 (2020), no. 3, 775-805. · Zbl 1469.14053 · doi:10.1090/jams/943
[16] H. KOCH, Galois theory of p-extensions, with a foreword by I. R. Shafarevich, translated from the 1970 German original by Franz Lemmermeyer, with a postscript by the author and Lemmermeyer. Springer Monographs in Mathematics, Springer, Berlin, 2002. · Zbl 1023.11002 · doi:10.1007/978-3-662-04967-9
[17] D. KRAINES, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449. · Zbl 0146.19201 · doi:10.2307/1994385
[18] G. LUCCHINI ARTECHE, Groupe de Brauer non ramifié des espaces homogènes à stabilisateur fini, J. Algebra 411 (2014), 129-181. · Zbl 1368.14033 · doi:10.1016/j.jalgebra.2014.03.040
[19] YU. I. MANIN, “Le groupe de Brauer-Grothendieck en géométrie diophantienne” in Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, Gauthier-Villars, Paris, 1971, 401-411. · Zbl 0239.14010
[20] W. S. MASSEY, “Some higher order cohomology operations” in Symposium internacional de topología algebraica, Univ. Nacional Autónoma de México and UNESCO, Mexico City, 1958, 145-154. · Zbl 0123.16103
[21] W. S. MASSEY, “Higher order linking numbers” in Conf. on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968), Univ. of Illinois at Chicago Circle, Chicago, 1969, 174-205. · Zbl 0212.55904
[22] W. S. MASSEY, Higher order linking numbers, J. Knot Theory Ramifications 7 (1998), no. 3, 393-414. · Zbl 0911.57009 · doi:10.1142/S0218216598000206
[23] W. S. MASSEY, Triple Massey products of weight \[(1,n,1)\]in Galois cohomology, J. Algebra 499 (2018), 272-280. · Zbl 1425.12005 · doi:10.1016/j.jalgebra.2017.11.036
[24] W. S. MASSEY, Higher triple Massey products and symbols, J. Algebra 527 (2019), 136-146. · Zbl 1447.12002 · doi:10.1016/j.jalgebra.2019.02.028
[25] E. MATZRI, Triple Massey products in Galois cohomology, preprint, arXiv:1411.4146 [Math.RA].
[26] I. M. MICHAILOV, Bogomolov multipliers for unitriangular groups, C. R. Acad. Bulgare Sci. 68 (2015), no. 6, 689-696. · Zbl 1340.14003
[27] J. S. MILNE, Arithmetic duality theorems, 2nd ed., BookSurge, Charleston, SC, 2006. · Zbl 1127.14001
[28] M. MORISHITA, Milnor invariants and Massey products for prime numbers, Compos. Math. 140 (2004), no. 1, 69-83. · Zbl 1066.11048 · doi:10.1112/S0010437X03000137
[29] J. MINÁČ and N. D. TÂN, Triple Massey products vanish over all fields, J. Lond. Math. Soc. (2) 94 (2016), no. 3, 909-932. · Zbl 1378.12002 · doi:10.1112/jlms/jdw064
[30] J. MINÁČ and N. D. TÂN, \[ Counting Galois {\mathbb{U}_4}({\mathbb{F}_p})\]-extensions using Massey products, J. Number Theory 176 (2017), 76-112. · Zbl 1422.11232 · doi:10.1016/j.jnt.2016.11.003
[31] J. MINÁČ and N. D. TÂN, Triple Massey products and Galois theory, J. Eur. Math. Soc. 19 (2017), no. 1, 255-284. · Zbl 1372.12004 · doi:10.4171/JEMS/665
[32] L. POSITSELSKI, Mixed Artin-Tate motives with finite coefficients, Mosc. Math. J. 11 (2011), no. 2, 317-402. · Zbl 1273.12004 · doi:10.17323/1609-4514-2011-11-2-317-402
[33] L. POSITSELSKI, Koszulity of cohomology = \[K(\uppi ,1) -ness + quasi-formality \], J. Algebra 483 (2017), 188-229. · Zbl 1454.16034 · doi:10.1016/j.jalgebra.2017.03.022
[34] A. PÁL and T. SCHLANK, The Brauer-Manin obstruction to the local-global principle for the embedding problem, Int. J. Number Theory 18 (2022), no. 7, 1535-1565. · Zbl 1500.12005 · doi:10.1142/S1793042122500786
[35] A. PÁL and E. SZABÓ, The strong Massey vanishing conjecture for fields with virtual cohomological dimension at most 1, preprint, arXiv:1811.06192 [Math.AG].
[36] R. T. SHARIFI, Massey products and ideal class groups, J. reine angew. Math. 603 (2007), 1-33. · Zbl 1163.11077 · doi:10.1515/CRELLE.2007.010
[37] D. VOGEL, Massey products in the Galois cohomology of number fields, Ph.D. dissertation, Ruprecht-Karls-Universität Heidelberg, 2004 · Zbl 1071.11068 · doi:10.11588/heidok.00004418
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.