×

On topologically distinct infinite families of exact Lagrangian fillings. (English) Zbl 07655749

Summary: In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.

MSC:

53D12 Lagrangian submanifolds; Maslov index
53D42 Symplectic field theory; contact homology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] An, B. H.; Bae, Y.; Lee, E., Lagrangian fillings for Legendrian links of affine type, preprint 2021, arXiv:2107.04283
[2] An, B. H.; Bae, Y.; Lee, E., Lagrangian fillings for Legendrian links of finite type, preprint 2021, arXiv:2101.01943
[3] Cao, C.; Gallup, N.; Hayden, K.; Sabloff, J. M., Topologically distinct Lagrangian and symplectic fillings, Math. Res. Lett. 21 (1) (2014), 85-99 · Zbl 1305.57044 · doi:10.4310/MRL.2014.v21.n1.a7
[4] Capovilla-Searle, O., Infinitely many planar fillings and symplectic Milnor fibers, preprint 2022, arXiv:2201.03081
[5] Casals, R.; Gao, H., Infinitely many Lagrangian fillings, Ann. of Math. 195 (1) (2022), 207-249 · Zbl 1494.53090 · doi:10.4007/annals.2022.195.1.3
[6] Casals, R.; Ng, L., Braid Loops with infinite monodromy on the Legendrian contact DGA, J. Topol. 15 (4) (2022), 1927-2016 · Zbl 1527.53080 · doi:10.1112/topo.12264
[7] Casals, R.; Zaslow, E., Legendrian weaves, preprint 2020, arXiv:2007.04943
[8] Chantraine, B., On Lagrangian concordance of Legendrian knots, Algebr. Geom. Topol. 10 (2010), 63-85 · Zbl 1203.57010 · doi:10.2140/agt.2010.10.63
[9] Chantraine, B.; Rizell, G. Dimitroglou; Ghiggini, P.; Golovko, R., Floer theory for Lagrangian cobordisms, J. Differential Geom. 114 (3) (2020), 393-465 · Zbl 1434.53093 · doi:10.4310/jdg/1583377213
[10] Dimitroglou Rizell, G., Legendrian ambient surgery and Legendrian contact homology, J. Symplectic Geom. 14 (3) (2016), 811-901 · Zbl 1356.53078 · doi:10.4310/JSG.2016.v14.n3.a6
[11] Ekholm, T., Morse flow trees and Legendrian contact homology in 1-jet spaces, Geom. Topol. 11 (2007), 1083-1224 · Zbl 1162.53064 · doi:10.2140/gt.2007.11.1083
[12] Ekholm, T., Rational symplectic field theory over \(\mathbb{Z}_2\) for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (3) (2008), 641-704 · Zbl 1154.57020 · doi:10.4171/JEMS/126
[13] Ekholm, T.; Etnyre, J.; Sullivan, M., Non-isotopic Legendrian submanifolds in \(\mathbb{R}^{2n+1} \), J. Differential Geom. 71 (2005), 85-128 · Zbl 1098.57013 · doi:10.4310/jdg/1143644313
[14] Ekholm, T.; Honda, K.; Kálmán, T., Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. (JEMS) 18 (11) (2016), 2627-2689 · Zbl 1357.57044 · doi:10.4171/JEMS/650
[15] Eliashberg, Y.; Givental, A.; Hofer, H., Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume 10 (2000), 560-673 · Zbl 0989.81114
[16] Gao, H.; Shen, L.; Weng, D., Augmentations, fillings, and clusters, preprint 2020, arXiv:2008.10793
[17] Gao, H.; Shen, L.; Weng, D., Positive braid links with infinitely many fillings, preprint 2020, arXiv:2009.00499
[18] Golovko, R., A note on the front spinning construction, Bull. Lond. Math. Soc. 46 (2) (2014), 258-268 · Zbl 1287.53069 · doi:10.1112/blms/bdt091
[19] Golovko, R., A note on the infinite number of exact Lagrangian fillings for spherical spuns, Pacific J. Math. 317 (1) (2022), 143-152 · Zbl 1496.53085 · doi:10.2140/pjm.2022.317.143
[20] Karlsson, C., A note on coherent orientations for exact Lagrangian cobordisms, Quantum Topol. 11 (1) (2020), 1-54 · Zbl 1439.53071 · doi:10.4171/QT/132
[21] Pan, Y., The augmentation category map induced by exact Lagrangian cobordisms, Algebr. Geom. Topol. 17 (3) (2017), 1813-1870 · Zbl 1435.53064 · doi:10.2140/agt.2017.17.1813
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.