×

A functional stable limit theorem for Gibbs-Markov maps. (English. French summary) Zbl 1522.37005

Summary: For a class of locally (but not necessarily uniformly) Lipschitz continuous \(d\)-dimensional observables over a Gibbs-Markov system, we show that convergence of (suitably normalized and centered) ergodic sums to a non-Gaussian stable vector is equivalent to the distribution belonging to the classical domain of attraction, and that it implies a weak invariance principle in the (strong) Skorohod \(\mathcal{J}_1\)-topology on \(\mathcal{D}([0,\infty),\mathbb{R}^d)\). The argument uses the classical approach via finite-dimensional marginals and \(\mathcal{J}_1\)-tightness. As applications, we record a Spitzer-type arcsine law for certain \(\mathbb{Z}\)-extensions of Gibbs-Markov systems, and prove an asymptotic independence property of excursion processes of intermittent interval maps.

MSC:

37A30 Ergodic theorems, spectral theory, Markov operators
37A50 Dynamical systems and their relations with probability theory and stochastic processes
37A25 Ergodicity, mixing, rates of mixing
37H12 Random iteration
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
60G51 Processes with independent increments; Lévy processes

References:

[1] J. Aaronson. An Introduction to Infinite Ergodic Theory. AMS, Providence, 1997. · Zbl 0882.28013 · doi:10.1090/surv/050
[2] J. Aaronson and M. Denker. Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps. Stoch. Dyn. 1 (2001) 193-237. · Zbl 1039.37002 · doi:10.1142/S0219493701000114
[3] J. Aaronson, M. Denker, O. Sarig and R. Zweimüller. Aperiodicity of cocycles and conditional local limit theorems. Stoch. Dyn. 4 (2004) 31-62. · Zbl 1077.37010
[4] J. Bertoin. Lévy Processes. Cambridge University Press, Cambridge, 1996. · Zbl 0861.60003
[5] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. · Zbl 0944.60003
[6] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge University Press, Cambridge, 1989. · Zbl 0667.26003
[7] I. Chevyrev, P. K. Friz, A. Korepanov and I. Melbourne. Superdiffusive limits for deterministic fast-slow dynamical systems. Probab. Theory Related Fields 178 (2020) 735-770. · Zbl 1473.37011 · doi:10.1007/s00440-020-00988-5
[8] E. B. Dynkin. Some limit theorems for sums of independent random variables with infinite mathematical expectation. Math. Stat. Prob. 1 (1961) 171-189. · Zbl 0112.10105
[9] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. I, 3rd edition. Wiley, New York, 1968. · Zbl 0155.23101 · doi:10.2307/2314609
[10] I. I. Gikhman and A. V. Skorohod. Introduction to the Theory of Random Processes. W.B. Saunders, Philadelphia, 1969. Reprint Dover 1996.
[11] B. V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, 1968.
[12] S. Gouëzel. Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128 (2004) 82-122. · Zbl 1038.37007 · doi:10.1007/s00440-003-0300-4
[13] S. Gouëzel. Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps. Israel J. Math. 180 (2010) 1-41. · Zbl 1213.37017 · doi:10.1007/s11856-010-0092-z
[14] D. Kocheim and R. Zweimüller. A joint limit theorem for compactly regenerative ergodic transformations. Studia Math. 203 (2011) 33-45. · Zbl 1233.37006 · doi:10.4064/sm203-1-2
[15] J. Lamperti. Some limit theorems for stochastic processes. J. Math. Mech. 7 (1958) 433-448. · Zbl 0228.60027 · doi:10.1512/iumj.1958.7.57027
[16] J. Lamperti. An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 (1958) 380-387. · Zbl 0228.60046 · doi:10.2307/1993222
[17] M. M. Meerschaert and H.-P. Scheffler. Limit Distributions for Sums of Independent Random Vectors. Wiley, New York, 2001. · Zbl 0990.60003
[18] I. Melbourne and R. Zweimüller. Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015) 545-556. · Zbl 1380.37064 · doi:10.1214/13-AIHP586
[19] F. Merlevède, M. Peligrad and S. Utev. Recent advances in invariance principles for stationary sequences. Probab. Surv. 3 (2006) 1-36. · Zbl 1189.60078 · doi:10.1214/154957806100000202
[20] E. L. Rvaceva. On domains of attraction of multi-dimensional distributions. In Select. Transl. Math. Statist. and Probability 183-205, 2. AMS, Providence, 1962. · Zbl 0208.44401
[21] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, London, 1994. · Zbl 0925.60027
[22] T. Sera. Functional limit theorem for occupation time processes of intermittent maps. Nonlinearity 33 (2020) 1183-1217. · Zbl 1431.60036 · doi:10.1088/1361-6544/ab5ceb
[23] T. Sera and K. Yano. Multiray generalization of the arcsine laws for occupation times of infinite ergodic transformations. Trans. Amer. Math. Soc. 372 (2019) 3191-3209. · Zbl 1481.60029 · doi:10.1090/tran/7755
[24] A. V. Skorohod. Limit theorems for stochastic processes. Theory Probab. Appl. 1 (1956) 261-290.
[25] A. V. Skorohod. Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2 (1957) 138-171.
[26] F. Spitzer. A combinatorial lemma and its application to probability theory. Trans. Amer. Math. Soc. 82 (1956) 323-339. · Zbl 0071.13003 · doi:10.2307/1993051
[27] M. Thaler. Estimates of the invariant densities of endomorphisms with indifferent fixed points. Israel J. Math. 37 (1980) 303-314. · Zbl 0447.28016 · doi:10.1007/BF02788928
[28] M. Thaler. Transformations on \[[0,1]\] with infinite invariant measures. Israel J. Math. 46 (1983) 67-96. · Zbl 0528.28011 · doi:10.1007/BF02760623
[29] M. Thaler. The Dynkin-Lamperti arc-sine laws for measure preserving transformations. Trans. Amer. Math. Soc. 350 (1998) 4593-4607. · Zbl 0910.28014 · doi:10.1090/S0002-9947-98-02312-5
[30] M. Thaler. A limit theorem for sojourns near indifferent fixed points of one-dimensional maps. Ergodic Theory Dynam. Systems 22 (2002) 1289-1312. · Zbl 1041.37017 · doi:10.1017/S0143385702000573
[31] M. Thaler. Asymptotic distributions and large deviations for iterated maps with an indifferent fixed point. Stoch. Dyn. 5 (2005) 425-440. · Zbl 1078.37005 · doi:10.1142/S0219493705001535
[32] M. Thaler and R. Zweimüller. Distributional limit theorems in infinite ergodic theory. Probab. Theory Related Fields 135 (2006) 15-52. · Zbl 1085.37005 · doi:10.1007/s00440-005-0454-3
[33] M. Tyran-Kaminska. Convergence to Lévy stable processes under some weak dependence conditions. Stochastic Process. Appl. 120 (2010) 1629-1650. · Zbl 1198.60018 · doi:10.1016/j.spa.2010.05.010
[34] M. Tyran-Kaminska. Weak convergence to Lévy stable processes in dynamical systems. Stoch. Dyn. 10 (2010) 263-289. · Zbl 1206.60047 · doi:10.1142/S0219493710002942
[35] W. Whitt. Stochastic-Process Limits. Springer, Berlin, 2002. · Zbl 0993.60001
[36] K. Yosida. Mean ergodic theorem in Banach spaces. Proc. Imp. Acad. (Tokyo) 14 (1938) 292-294. · Zbl 0019.41403
[37] R. Zweimüller. Stable limits for probability preserving maps with indifferent fixed points. Stoch. Dyn. 3 (2003) 83-99. · Zbl 1035.37001 · doi:10.1142/S0219493703000620
[38] R. Zweimüller. Infinite measure preserving transformations with compact first regeneration. J. Anal. Math. 103 (2007) 93-131. · Zbl 1152.28018 · doi:10.1007/s11854-008-0003-y
[39] R. Zweimüller. Mixing limit theorems for ergodic transformations. J. Theor. Probab. 20 (2007) 1059-1071 · Zbl 1137.60017 · doi:10.1007/s10959-007-0085-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.