×

An accelerated variant of the projection based parallel hybrid algorithm for split null point problems. (English) Zbl 1523.47066

Summary: In this paper, we consider an accelerated shrinking projection based parallel hybrid algorithm to study the split null point problem (SNPP) associated with the maximal monotone operators in Hilbert spaces. The analysis of the proposed algorithm provides strong convergence results under suitable set of control conditions as well as viability with the help of a numerical experiment. The results presented in this paper improve various existing results in the current literature.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H05 Monotone operators and generalizations
49M99 Numerical methods in optimal control
54H25 Fixed-point and coincidence theorems (topological aspects)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] F. Alvarez and H. Attouch, An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal. 9 (2001), 3-11. · Zbl 0991.65056
[2] Y. Arfat, O.S. Iyiola, M.A.A. Khan, P. Kumam, W. Kumam and K. Sitthithakerngkiet, Convergence analysis of the shrinking approximants for fixed point problem and generalized split common null point problem, J. Inequal. Appl. 67 (2022), 1-21. · Zbl 1506.47104
[3] Y. Arfat, M.A.A. Khan, P. Kumam, W. Kumam and K. Sitthithakerngkiet, Iterative solutions via some variants of extragradient approximants in Hilbert spaces, AIMS Math. 7 (2022), no. 8, 13910-13926.
[4] Y. Arfat, P. Kumam, M.A.A. Khan, P.S. Ngiamsunthorn and A. Kaewkhao, An inertially constructed forward-backward splitting algorithm in Hilbert spaces, Adv. Difference Equ. 124 (2021). · Zbl 1502.47078
[5] Y. Arfat, P. Kumam, M.A.A. Khan, P.S. Ngiamsunthorn and A. Kaewkhao, A parallel hybrid accelerated extragradient algorithm for pseudomonotone equilibrium, fixed point, and split null point problems, Adv. Difference Equ. 364 (2021). · Zbl 1502.47079
[6] Y. Arfat, P. Kumam, M.A.A. Khan and P.S. Ngiamsunthorn, An accelerated projection based parallel hybrid algorithm for fixed point and split null point problems in Hilbert spaces, Math. Meth. Appl. Sci. (2021), 1-19. · Zbl 1502.47079
[7] Y. Arfat, P. Kumam, M.A.A. Khan and P.S. Ngiamsunthorn, Parallel shrinking inertial extragradient approximants for pseudomonotone equilibrium, fixed point and generalized split null point problem, Ricerche Mat. (2021), DOI: 10.1007/s11587-021-00647-4. · Zbl 1502.47079
[8] Y. Arfat, P. Kumam, M.A.A. Khan and P. S. Ngiamsunthorn, Shrinking approximants for fixed point problem and generalized split null point problem in Hilbert spaces, Optim. Lett. 16 (2022), 1895-1913. · Zbl 07539464
[9] Y. Arfat, P. Kumam, M.A.A. Khan and O. S. Iyiola, Multi-inertial parallel hybrid projection algorithm for generalized split null point problems, J. Appl. Math. Comput. (2021), DOI: 10.1007/s12190-021-01660-4. · Zbl 07597395
[10] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York, 2011. · Zbl 1218.47001
[11] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl. 20 (2004), no. 1, 103-120. · Zbl 1051.65067
[12] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759-775. · Zbl 1262.47073
[13] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239. · Zbl 0828.65065
[14] Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl. 21 (2005), 2071-2084. · Zbl 1089.65046
[15] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms 59 (2012), 301-323. · Zbl 1239.65041
[16] Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Nonlinear Convex Anal. 16 (2009), 587-600. · Zbl 1189.65111
[17] P.L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Phys. 95 (1996), 155-453.
[18] V. Dadashi, Shrinking projection algorithms for the split common null point problem, Bull. Aust. Math. Soc. 99 (2017), 299-306. · Zbl 06792046
[19] A. Gibali, A new split inverse problem and an application to least intensity feasible solutions, Pure. Appl. Func. Anal. 2 (2017), 243-258. · Zbl 1375.49048
[20] D.V. Hieu, L.D. Muu and P.K. Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algorithms 73 (2016), 197-217. · Zbl 1367.65089
[21] C. Martinez-Yanes and H.K. Xu, Strong convergence of CQ method for fixed point iteration processes, Nonlinear Anal, 64 (2006), 2400-2411. · Zbl 1105.47060
[22] J.J. Moreau, Prosimite et dualite dans un espace Hilbertien, Bull. Soc. Math. France 93 (1965), 273-299. · Zbl 0136.12101
[23] A. Moudafi and M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math. 155 (2003), 447-454. · Zbl 1027.65077
[24] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys. 4 (1964), no. 5, 1-17. · Zbl 0147.35301
[25] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88. · Zbl 0222.47017
[26] S. Reich and T.M. Tuyen, A new algorithm for solving the split common null point problem in Hilbert spaces, Numer. Algorithms 83 (2020), 789-805. · Zbl 1513.47128
[27] S. Takahashi and W. Takahashi, The split common null point problem and the shrinking projection method in Banach spaces, Optimization. 65 (2016), 281-287. · Zbl 1338.47110
[28] R. Tibshirani, Regression shrinkage and selection via lasso, J. R. Stat. Soc. Ser. B Stat. Methodol. 58 (1996), 267-288. · Zbl 0850.62538
[29] F. Wang, A new iterative method for the split common fixed point problem in Hilbert spaces, Optimization 66 (2017), 407-415. · Zbl 1365.90250
[30] H.K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces, Inverse Probl. 26 (2010), article ID 105018. · Zbl 1213.65085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.