zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sharp bounds on the number of scattering poles for perturbations of the Laplacian. (English) Zbl 0766.35032
Author’s summary: Sharp bounds on the number $N(r)$ of the scattering poles in the disc $\vert z\vert\leq r$ for large class of compactly supported perturbations (not necessarily selfadjoint) of the Laplacian in $\bbfR\sp n$, $n\geq 3$, odd, are obtained. In particular, in the elliptic case the estimate $N(r)\leq Cr\sp n+C$ is proved.

MSC:
35P25Scattering theory (PDE)
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
47A40Scattering theory of linear operators
WorldCat.org
Full Text: DOI
References:
[1] Gohberg, I., Krein, M.: Introduction to the theory of linear non-selfadjoint operators. Providence, RI: AMS, 1969 · Zbl 0181.13504
[2] Intissar, A.: A polynomial bound on the number of scattering poles for a potential in even dimensional space $\mathbb{R}$ n . Commun. Partial Differ. Eqs.11, 367--396 (1986) · Zbl 0607.35069 · doi:10.1080/03605308608820428
[3] Lax, P.D., Phillips, R.S.: Scattering theory. New York: Academic Press 1967 · Zbl 0214.12002
[4] Melrose, R.B.: Polynomial bounds on the number of scattering poles. J. Funct. Anal.53, 287--303 (1983) · Zbl 0535.35067 · doi:10.1016/0022-1236(83)90036-8
[5] Melrose, R.B.: Polynomial bounds on the distribution of poles in scattering by an obstacle. Journées ”Equations aux Dérivées Partielle,” Saint-Jean-de-Montes, 1984
[6] Melrose, R.B.: Weyl asymptotics for the phase in obstacle scattering. Commun. Partial Differ. Eqs.13, 1431--1439 (1988) · Zbl 0686.35089 · doi:10.1080/03605308808820582
[7] Menikoff, A., Sjöstrand, J.: On the eigenvalues of a class of hypoelliptic operators. Math. Ann.235, 55--85 (1978) · Zbl 0375.35014 · doi:10.1007/BF01421593
[8] Sjöstrand, J.: Geometric bounds on the number of resonances for semiclassical problems. Duke Math. J.60, 1--57 (1990) · Zbl 0702.35188 · doi:10.1215/S0012-7094-90-06001-6
[9] Sjöstrand, J., Zworski, M.: Complex scaling and distribution of scattering poles. J. Am. Math. Soc. (to appear) · Zbl 0752.35046
[10] Titchmarsh, E.C.: The theory of functions, Oxford: Oxford University Press 1968 · Zbl 0005.21004
[11] Vainberg, B.: Asymptotic methods in equations of mathematical physics. New York: Gordon and Breach 1988 · Zbl 0907.35078
[12] Vodev, G.: Polynomial bounds on the number of scattering poles for symmetric systems. Ann. Inst. H. Poincaré (Physique Théorique)54, 199--208 (1991) · Zbl 0816.35101
[13] Vodev, G.: Polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in $\mathbb{R}$ n ,n, odd. Osaka. J. Math.28, 441--449 (1991) · Zbl 0754.35102
[14] Vodev, G.: Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in $\mathbb{R}$ n . Math. Ann.291, 39--49 (1991) · Zbl 0754.35105 · doi:10.1007/BF01445189
[15] Zworski, M.: Distribution of poles for scattering on the real line. J. Funct. Anal.73, 277--296 (1987) · Zbl 0662.34033 · doi:10.1016/0022-1236(87)90069-3
[16] Zworski, M.: Sharp polynomial bounds on the number of scattering poles of radial potentials. J. Funct. Anal.82, 370--403 (1989) · Zbl 0681.47002 · doi:10.1016/0022-1236(89)90076-1
[17] Zworski, M.: Sharp polynomial bounds on the number of scattering poles. Duke Math. J.59, 311--323 (1989) · Zbl 0705.35099 · doi:10.1215/S0012-7094-89-05913-9