×

Kernel based Dirichlet sequences. (English) Zbl 1527.60003

Summary: Let \(X = (X_1, X_2, \dots)\) be a sequence of random variables with values in a standard space \((S, \mathcal{B})\). Suppose \[ X_1 \sim \nu \quad \text{and} \quad P(X_{n+1} \in \cdot \mid X_1, \dots, X_n) = \frac{\theta \nu (\cdot) + \sum_{i=1}^n K(X_i)(\cdot)}{n + \theta} \qquad \text{a.s.} \] where \(\theta > 0\) is a constant, \(\nu\) a probability measure on \(\mathcal{B}\), and \(K\) a random probability measure on \(\mathcal{B}\). Then, \(X\) is exchangeable whenever \(K\) is a regular conditional distribution for \(\nu\) given any sub-\(\sigma\)-field of \(\mathcal{B}\). Under this assumption, \(X\) enjoys all the main properties of classical Dirichlet sequences, including Sethuraman’s representation, conjugacy property, and convergence in total variation of predictive distributions. If \(\mu\) is the weak limit of the empirical measures, conditions for \(\mu\) to be a.s. discrete, or a.s. non-atomic, or \(\mu \ll \nu\) a.s., are provided. Two CLT’s are proved as well. The first deals with stable convergence while the second concerns total variation distance.

MSC:

60B10 Convergence of probability measures
60G09 Exchangeability for stochastic processes
60G57 Random measures
62G05 Nonparametric estimation
60F05 Central limit and other weak theorems

References:

[1] Antoniak, C.E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 1152-1174. · Zbl 0335.60034
[2] Bally, V. and Caramellino, L. (2016). Asymptotic development for the CLT in total variation distance. Bernoulli 22 2442-2485. 10.3150/15-BEJ734 · Zbl 1346.60016
[3] Berti, P., Dreassi, E., Pratelli, L. and Rigo, P. (2021). A class of models for Bayesian predictive inference. Bernoulli 27 702-726. 10.3150/20-BEJ1255 · Zbl 1466.62274
[4] Berti, P., Pratelli, L. and Rigo, P. (2004). Limit theorems for a class of identically distributed random variables. Ann. Probab. 32 2029-2052. 10.1214/009117904000000676 · Zbl 1050.60004
[5] Berti, P., Pratelli, L. and Rigo, P. (2012). Limit theorems for empirical processes based on dependent data. Electron. J. Probab. 17 no. 9, 18. 10.1214/EJP.v17-1765 · Zbl 1246.60009
[6] Berti, P., Pratelli, L. and Rigo, P. (2013). Exchangeable sequences driven by an absolutely continuous random measure. Ann. Probab. 41 2090-2102. 10.1214/12-AOP786 · Zbl 1277.60064
[7] Berti, P. and Rigo, P. (2007). 0-1 laws for regular conditional distributions. Ann. Probab. 35 649-662. 10.1214/009117906000000845 · Zbl 1118.60004
[8] Blackwell, D. and MacQueen, J.B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353-355. · Zbl 0276.62010
[9] Dalal, S.R. (1979). Dirichlet invariant processes and applications to nonparametric estimation of symmetric distribution functions. Stochastic Process. Appl. 9 99-107. 10.1016/0304-4149(79)90043-7 · Zbl 0415.60035
[10] Ewens, W.J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3. 10.1016/0040-5809(72)90035-4 · Zbl 0245.92009
[11] Favaro, S., Lijoi, A. and Prünster, I. (2012). On the stick-breaking representation of normalized inverse Gaussian priors. Biometrika 99 663-674. 10.1093/biomet/ass023 · Zbl 1437.62455
[12] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037
[13] Fortini, S., Ladelli, L. and Regazzini, E. (2000). Exchangeability, predictive distributions and parametric models. Sankhy¯a Ser. A 62 86-109. · Zbl 0973.62002
[14] Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge Series in Statistical and Probabilistic Mathematics 44. Cambridge: Cambridge Univ. Press. 10.1017/9781139029834 · Zbl 1376.62004
[15] Hahn, P.R., Martin, R. and Walker, S.G. (2018). On recursive Bayesian predictive distributions. J. Amer. Statist. Assoc. 113 1085-1093. 10.1080/01621459.2017.1304219 · Zbl 1402.62062
[16] Hansen, B. and Pitman, J. (2000). Prediction rules for exchangeable sequences related to species sampling. Statist. Probab. Lett. 46 251-256. 10.1016/S0167-7152(99)00109-1 · Zbl 0944.62109
[17] Hosseini, R. and Zarepour, M. (2021). Bayesian bootstrapping for symmetric distributions. Statistics 55 711-732. 10.1080/02331888.2021.1961141 · Zbl 1477.62118
[18] Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351-357. 10.1214/aos/1176346412 · Zbl 0557.62036
[19] Maitra, A. (1977). Integral representations of invariant measures. Trans. Amer. Math. Soc. 229 209-225. 10.2307/1998506 · Zbl 0357.28020
[20] Majumdar, S. (1992). On topological support of Dirichlet prior. Statist. Probab. Lett. 15 385-388. 10.1016/0167-7152(92)90171-Z · Zbl 0758.62010
[21] Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics, Probability and Game Theory. Institute of Mathematical Statistics Lecture Notes—Monograph Series 30 245-267. Hayward, CA: IMS. 10.1214/lnms/1215453576 · Zbl 0996.60500
[22] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 855-900. 10.1214/aop/1024404422 · Zbl 0880.60076
[23] Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639-650. · Zbl 0823.62007
[24] Hjort, N.L., Holmes, C., Muller, P. and Walker, S.G. (2010). Bayesian Nonparametric. Cambridge: Cambridge Univ. Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.