×

zbMATH — the first resource for mathematics

A note on Jordan rings of quotients. (English) Zbl 0767.17027
The author states a result proved in another paper of his to the effect that if \(A\) is a finite JBW-algebra with Jordan regular ring \(\widehat A\) associated to it, then \(A\) has the common multiple property and \(\widehat A\) is the total Jordan ring of quotients of \(A\). He also makes a conjecture as to when this same conclusion holds for Jordan algebras \(A\subseteq \widehat A\) with the same unit and satisfying certain technical (algebraic) conditions.
MSC:
17C65 Jordan structures on Banach spaces and algebras
16U20 Ore rings, multiplicative sets, Ore localization
17C99 Jordan algebras (algebras, triples and pairs)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] 1 P. Ara and P. Menal , On regular rings with involution , Arch. Math. 42 ( 1984 ), 126 - 130 . MR 751482 | Zbl 0534.16008 · Zbl 0534.16008
[2] 2 S.K. Berberian , Baer *-rings , Die Grundlehren der Math. Wissenschften , B and 195 , Springer-Verlag , Berlin and New York , 1972 . MR 429975 | Zbl 0242.16008 · Zbl 0242.16008
[3] 3 S.K. Berberian , The regular ring of a finite AW* -algebra , Ann. Math. 65 ( 2 ) ( 1957 ), 224 - 240 . MR 84743 | Zbl 0085.09904 · Zbl 0085.09904
[4] 4 I. Hafner , The regular ring and the maximal ring of quotients of a finite Baer *-ring , Michigan Math. Journal 21 ( 1974 ), 153 - 160 . Article | MR 342552 | Zbl 0313.16015 · Zbl 0313.16015
[5] 5 H. Hanche-Olsen and E. Stormer , Jordan Operator Algebras , Pitman , 1984 . MR 755003 | Zbl 0561.46031 · Zbl 0561.46031
[6] 6 D. Handelman , Finite Rickart C*-algebras and their properties, Studies in Analysis, Adv. in Math . Suppl. Studies 4 ( 1979 ), 171 - 196 . MR 546806 | Zbl 0511.46054 · Zbl 0511.46054
[7] 7 N. Jacobson , Structure and representations of Jordan algebras , Amer. Math. Soc. Colloq. Publ. 39 , Providence, Rhode Island , 1968 . MR 251099 | Zbl 0218.17010 · Zbl 0218.17010
[8] 8 N. Jacobson , K. McCRIMMON and M. Parwathi , Localization of Jordan algebras , Comm. Algebra 6 ( 9 ) ( 1978 ), 911 - 958 . MR 573092 | Zbl 0394.17009 · Zbl 0394.17009
[9] 9 P. Jimenez and A. Rodriguez , The Jordan regular ring associated to a finite JBW-algebra , J. Algebra 110 ( 1987 ), 56 - 73 . MR 904181 | Zbl 0623.46032 · Zbl 0623.46032
[10] 10 S. Montgomery , Rings of quotients for a class of special Jordan rings , J. Algebra 31 ( 1974 ), 154 - 165 . MR 374203 | Zbl 0285.17011 · Zbl 0285.17011
[11] 11 E.S. Pyle , The regular ring and the maximal ring of quotients of a finite Baer *-ring , Trans. Amer. Math. Soc. 203 ( 1975 ), 201 - 213 . MR 364338 | Zbl 0273.16011 · Zbl 0273.16011
[12] 12 E.I. Zel’manov , On Goldie Theory in Jordan rings , Sibirsk. Math. Zh. 28 ( 1987 ), 44 - 52 and 29 ( 1988 ), 68 - 74 . MR 928338 | Zbl 0638.17012 · Zbl 0638.17012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.