×

Semilinear wave equations. (English) Zbl 0767.35045

Summary: We survey existence and regularity results for semi-linear wave equations. In particular, we review the recent regularity results for the \(u^ 5\)-Klein-Gordon equation by M. G. Grillakis [Ann. Math., II. Ser. 132, No. 3, 485-509 (1990; Zbl 0736.35067)] and this author [Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV, Ser. 15, No. 3, 495-513 (1988; Zbl 0728.35072)] and give a self-contained, slightly simplified proof.

MSC:

35L70 Second-order nonlinear hyperbolic equations
35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35L05 Wave equation
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35Q40 PDEs in connection with quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Philip Brenner, On \?_{\?}-\?_{\?\(^{\prime}\)} estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251 – 254. · Zbl 0321.35052
[2] Philip Brenner and Wolf von Wahl, Global classical solutions of nonlinear wave equations, Math. Z. 176 (1981), no. 1, 87 – 121. · Zbl 0457.35059
[3] Felix E. Browder, On non-linear wave equations, Math. Z. 80 (1962), 249 – 264. · Zbl 0109.32102
[4] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z. 189 (1985), no. 4, 487 – 505. · Zbl 0549.35108
[5] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations, Comm. Math. Phys. 123 (1989), no. 4, 535 – 573. · Zbl 0698.35112
[6] Manoussos G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), no. 3, 485 – 509. · Zbl 0736.35067
[7] Fritz John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), no. 1-3, 235 – 268. · Zbl 0406.35042
[8] Konrad Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z. 77 (1961), 295 – 308 (German). · Zbl 0111.09105
[9] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37 – 91. · Zbl 0633.53062
[10] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969 (French). · Zbl 0189.40603
[11] Hartmut Pecher, Ein nichtlinearer Interpolationssatz und seine Anwendung auf nichtlineare Wellengleichungen, Math. Z. 161 (1978), no. 1, 9 – 40 (German). · Zbl 0384.35039
[12] Jeffrey Rauch, I. The \?\(^{5}\) Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. I (Paris, 1978/1979) Res. Notes in Math., vol. 53, Pitman, Boston, Mass.-London, 1981, pp. 335 – 364.
[13] L. I. Schiff, Nonlinear meson theory of nuclear forces. I, Phys. Rev. 84 (1951), 1-9. · Zbl 0054.08305
[14] I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France 91 (1963), 129 – 135. · Zbl 0178.45403
[15] Jalal Shatah, Weak solutions and development of singularities of the \?\?(2) \?-model, Comm. Pure Appl. Math. 41 (1988), no. 4, 459 – 469. · Zbl 0686.35081
[16] Walter A. Strauss, Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, vol. 73, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. · Zbl 0714.35003
[17] Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705 – 714. · Zbl 0372.35001
[18] Michael Struwe, Globally regular solutions to the \?\(^{5}\) Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 495 – 513 (1989). · Zbl 0728.35072
[19] Yu Xi Zheng, Concentration in sequences of solutions to the nonlinear Klein-Gordon equation, Indiana Univ. Math. J. 40 (1991), no. 1, 201 – 235. · Zbl 0725.35102
[20] L. V. Kapitanskii, The Cauchy problem for a semi-linear wave equation (1989).
[21] J. Shatah and A. Tahvildar-Zadeh, Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds, Comm. Pure Appl. Math. 45 (1992), no. 8, 947 – 971. · Zbl 0769.58015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.