×

Symmetries of variable coefficient Korteweg-de Vries equations. (English) Zbl 0767.35077

Summary: The Lie point symmetries of the equation \(u_ t+f(x,t)uu_ x+g(x,t)u_{xxx}=0\) are studied. The symmetry group is shown to be, at most, four dimensional, and this occurs if and only if the equation is equivalent, under local point transformations, to the KdV equation with \(f=g=1\). For nine different classes of functions \(f\) and \(g\), the symmetry group turns out to be three dimensional. Two-dimensional and one-dimensional symmetry groups occur for 11 and 15 classes of equations, respectively.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1080/14786449508620739
[2] DOI: 10.1017/S0022112078001214 · Zbl 0374.76023
[3] DOI: 10.1017/S0022112078001214 · Zbl 0374.76023
[4] DOI: 10.1002/sapm1987762133 · Zbl 0678.35008
[5] DOI: 10.1002/sapm1987762133 · Zbl 0678.35008
[6] DOI: 10.1017/S0022112073000492 · Zbl 0273.76012
[7] DOI: 10.1146/annurev.fl.12.010180.000303
[8] DOI: 10.1146/annurev.fl.12.010180.000303
[9] DOI: 10.1016/0375-9601(87)90184-8
[10] DOI: 10.1016/0375-9601(88)90186-7
[11] Abellanas L., Phys. Lett. A 125 pp 456– (1985)
[12] DOI: 10.1063/1.524491 · Zbl 0445.35056
[13] DOI: 10.1007/BF02240074 · Zbl 0595.65127
[14] DOI: 10.1007/BF02240074 · Zbl 0595.65127
[15] DOI: 10.1063/1.522992 · Zbl 0357.17004
[16] DOI: 10.1063/1.522969
[17] DOI: 10.1063/1.522969
[18] DOI: 10.1063/1.522969
[19] DOI: 10.1063/1.523237 · Zbl 0372.22008
[20] DOI: 10.1063/1.525721 · Zbl 0514.35083
[21] DOI: 10.1063/1.525875 · Zbl 0531.35069
[22] DOI: 10.1063/1.527283 · Zbl 0632.35062
[23] DOI: 10.1063/1.527283 · Zbl 0632.35062
[24] DOI: 10.1063/1.528936 · Zbl 0727.35126
[25] DOI: 10.1093/imamat/44.1.27 · Zbl 0719.35083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.