Extended superconformal Galilean symmetry in Chern-Simons matter systems. (English) Zbl 0767.53058

Summary: We study the nonrelativistic limit of the \(N=2\) supersymmetric Chern- Simons matter system. We show that in addition to Galilean invariance the model admits a set of symmetries generated by fermionic charges, which can be interpreted as an extended Galilean supersymmetry. The system also possesses a hidden conformal invariance and then the full group of symmetries is the extended superconformal Galilean group. We also show that imposing extended superconformal Galilean symmetry determines the values of the coupling constants in such a way that their values in the bosonic sector agree with the values of Jackiw and Pi for which a self- dual equation exists. We finally analyze the second quantized version of the model and the two-particle sector.


53Z05 Applications of differential geometry to physics
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
Full Text: DOI arXiv


[1] Hong, J.; Kim, Y.; Pac, P. Y., Phys. Rev. Lett., 64, 2230 (1990)
[2] Jackiw, R.; Weinberg, E. J., Phys. Rev. Lett., 64, 2234 (1990)
[4] Lee, C.; Lee, K.; Weinberg, E. J., Phys. Lett. B, 253, 105 (1990)
[5] Jackiw, R.; Pi, S.-Y., Phys. Rev. Lett., 64, 2969 (1990)
[6] Puzalowski, R., Acta Phys. Austriaca, 50, 45 (1978)
[7] de Azcárraga, J. A.; Ginestar, D., J. Math. Phys., 32, 12 (1991), and references therein
[8] Hagen, C. R., Phys. Rev., 31, 848 (1985)
[9] Jackiw, R., Phys. Rev. Lett., 41, 1635 (1978)
[10] Jackiw, R., Phys. Today, 25, 23 (1972)
[11] de Alfaro, V.; Fubini, S.; Furlan, G., Nuovo Cimento A, 34, 569 (1976)
[12] Hagen, C. R., Phys. Rev. D, 5, 377 (1972)
[13] Niederer, U., Helv. Phys. Acta, 47, 119 (1974)
[14] Jackiw, R., (Ali, A.; Hoodbhoy, P., M.A.B. Bég Memorial Volume. M.A.B. Bég Memorial Volume, MIT-CTP-1937 (1991), World Scientific: World Scientific Singapore)
[15] DiVecchia, P.; Ferrara, S., Nucl. Phys. B, 130, 93 (1977)
[16] Hlousek, Z.; Spector, D., Nucl. Phys. B, 370, 143 (1992)
[17] Bergman, O., MIT-CTP-2045 (1991)
[18] Lee, C.; Lee, K.; Min, H., Phys. Lett. B, 252, 79 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.