zbMATH — the first resource for mathematics

Determinants, finite-difference operators and boundary value problems. (English) Zbl 0767.58043
The author studies the zeta-function determinant of a positive elliptic differential operator acting on sections of a vector bundle over a compact manifold. Following D. B. Ray and I. M. Singer [ Adv. Math. 7, 145-210 (1971; Zbl 0239.58014)], \(\log\det L\) is defined by analytically continuing the function \(\sum_{\lambda_ i\in Spec(L)} \lambda_ i^{-s} \log \lambda_ i\) from \(Re(s)\) large to \(s=0\),
In a previous paper [Invent. Math. 88, 447-493 (1987; Zbl 0602.58044)], the author related this determinant, the determinant of an operator acting on an infinite dimensional space of functions, to the determinant of a finite dimensional matrix whose entries are constructed from boundary values of the solutions of the operator. Previous proofs of this result follow indirect approaches. This paper presents a new and simpler proof using a result concerning matrices of \(SU(n,\mathbb{C})\).
Some applications are given: Laplacians on graphs, with relation to electrical network theory, and boundary value problems for finite difference operators defined on an interval.

58J52 Determinants and determinant bundles, analytic torsion
35J55 Systems of elliptic equations, boundary value problems (MSC2000)
58J32 Boundary value problems on manifolds
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics
Full Text: DOI
[1] [B-F-K] Burghelea, D., Friedlander, L., Kappeler, T.: On the Determinant of Elliptic Differential and Finite Difference Operators in Vector Bundles overS 1. Commun. Math. Phys. (1991) (to appear) · Zbl 0734.58043
[2] [B-D] Bott, R., Duffin, R.: On the Algebra of Networks. Trans. Am. Math. Soc.74, 99–103 (1953) · Zbl 0050.25104 · doi:10.1090/S0002-9947-1953-0056573-X
[3] [D-D] Dreyfuss, T., Dym, H.: Product formulas for the eigenvalues of a class of boundary value problems. Duke Math. J.45, 15–37 (1978). · Zbl 0387.34021 · doi:10.1215/S0012-7094-78-04502-7
[4] [Fo1] Forman, R.: Functional Determinants and Geometry. Inv. Math.88, 447–493 (1987) · Zbl 0602.58044 · doi:10.1007/BF01391828
[5] [Fo2] Forman, R.: Difference Operators, Covering Spaces and Determinants. Topology28, 413–438 (1989) · Zbl 0684.57011 · doi:10.1016/0040-9383(89)90003-7
[6] [Fo3] Forman, R.: Determinants of Laplacians on Graphs, preprint
[7] [Fr] Franklin, P.: The Electric Currents in a Network. J. Math. Phys.4, 97–102 (1925) · JFM 51.0089.01
[8] [G-K] Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators; Vol.18 (Translation of Mathematical Monographs). Providence, Rhode Island: American Mathematical Society 1969 · Zbl 0181.13504
[9] [Ki] Kirchhoff, G.: Über die Auflösung der Gleichungen auf welche man beider Untersuchen der Linearen Verteilung galvanischer Ströme geführt wird. Annal. Physik Chemie72, 495–508 (1847)
[10] [L-S] Levit, S., Smilansky, U.: A theorem on infinite products of eigenvalues of Sturm-Liouville type operators. Proc. Am. Math. Soc.65, 299–302 (1977) · Zbl 0374.34016 · doi:10.1090/S0002-9939-1977-0457836-8
[11] [Mi] Milnor, J.: Morse Theory. Annal Math. Stud., Vol.51. Princeton, NJ: Princeton University Press 1963 · Zbl 0108.10401
[12] [Ra] Ramond, P.: Field Theory, A Modern Primer. Frontiers in Physics, Vol.51. Reading, MA: Benjamin/Cummings 1981
[13] [R-S] Ray, D.B., Singer, I.M.:R-Torsion and the Laplacian on Riemannian manifolds. Adv. Math.7, 145–210 (1971) · Zbl 0239.58014 · doi:10.1016/0001-8708(71)90045-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.