Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin-Watanabe. (English) Zbl 0767.60035

Summary: The asymptotic expansions of the probability distributions of statistics for the small diffusion are derived by means of the Malliavin calculus. From this the second order efficiency of the maximum likelihood estimator is proved.


60F99 Limit theorems in probability theory
62F12 Asymptotic properties of parametric estimators
60H07 Stochastic calculus of variations and the Malliavin calculus
62M05 Markov processes: estimation; hidden Markov models
62E20 Asymptotic distribution theory in statistics
Full Text: DOI


[1] Akahira, M., Takeuchi, K.: Asymptotic efficiency of statistical estimators: concepts and higher order asymptotic efficiency. (Lect. Notes Stat., Vol. 7) Berlin Heidelberg New York: Springer 1981 · Zbl 0463.62026
[2] Ghosh, J.K., Subramanyam, K.: Second order efficiency of maximum likelihood estimators. Sankhy?, Ser. A36, 325-358 (1974) · Zbl 0321.62035
[3] Ikeda, N., Watanabe, S.: An introduction to Malliavin’s calculus. In: Itô, K. (ed.) Stochastic analysis. Proc. Taniguchi Intern. Symp. on Stochastic Analysis, Katada and Kyoto 1982, pp. 1-52. Tokyo: Kinokuniya/North-Holland 1984
[4] Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, 2nd edn. Tokyo: North-Holland/Kodansha 1989 · Zbl 0684.60040
[5] Kusuoka, S., Strook, D.W.: Applications of the Malliavin calculus, Part I. In: Itô, K. (ed.) Stochastic analysis, Proc. Taniguchi Intern. Symp. on Stochastic Analysis, Katada and Kyoto 1982, pp. 271-306. Tokyo: Kinokuniya/North-Holland 1984
[6] Kutoyants, Yu.A.: Parameter estimation for stochastic processes. Prakasa Rao, B.L.S. (ed.) Berlin: Heldermann 1984 · Zbl 0542.62073
[7] Kutoyants, Yu.A.: Expansion of a maximum likelihood estimate by diffusion powers. Theory Probab. Appl.29, 465-477 (1984) · Zbl 0604.62080
[8] Liptser, R.S., Shiryayev, A.N.: Statistics of random processes I. Berlin Heidelberg New York: Springer 1977 · Zbl 0364.60004
[9] Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators. In: Itô, K. (ed.) Proceedings of the International Symposium SDE Kyoto, pp. 195-263. Tokyo: Kinokuniya 1976
[10] Malliavin, P.:C k -hypoellipticity with degeneracy. In: Friedman, A., Pinsky, M. (eds.) Stochastic analysis, pp. 199-214, 327-340. New York: Academic Press 1978 · Zbl 0449.58022
[11] Rao, C.R.: Asymptotic efficiency and limiting information. In: Proc. Fourth Berkeley Symp. on Math. Statist. Probab. Vol. 1, pp. 531-545. Berkeley and Los Angeles: University of California Press 1961 · Zbl 0156.39802
[12] Rao, C.R.: Criteria of estimation in large samples. Sankhy?25, 189-206 (1963) · Zbl 0116.10903
[13] Taniguchi, M.: On the second order asymptotic efficiency of estimators of Gaussian ARMA processes. Ann. Stat.11, 157-169 (1983) · Zbl 0509.62086
[14] Taniguchi, M.: Higher order asymptotic theory for time series analysis (Lect. Notes Stat. Vol. 68), Berlin Heidelberg New York: Springer 1991 · Zbl 0729.62086
[15] Watanabe, S.: Malliavin’s calculus in terms of generalized Wiener functionals. In: (Lect. Notes Control Inf. Sci., Vol. 49) Berlin Heidelberg New York: Springer 1983 · Zbl 0512.60024
[16] Watanabe, S.: Lectures on stochastic differential equations and Malliavin calculus. Tata Institute of Fundamental Research. Berlin Heidelberg New York: Springer 1984
[17] Watanabe, S.: Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab.15, 1-39 (1987) · Zbl 0633.60077
[18] Yoshida, N.: Asymptotic expansion for small diffusion?an application of Malliavin-Watanabe theory. Research Memorandum Vol. 383. The Institute of Statistical Mathematics, 1990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.