Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations. (English) Zbl 0767.73062

Summary: A micromechanics constitutive model has been proposed to describe the pseudoelastic and shape memory behavior of polycrystalline shape memory alloys under various temperatures. The derivation of the model is based on the thermodynamics, micromechanics and microstructural physical mechanism analysis of the material during deformation and it is shown that the inelastic deformation of the material in the mechanical and/or thermal loading processes is associated with some temperature, stress state and loading history dependent yielding surfaces which microscopically correspond to the forward and reverse transformation (or reorientation) processes, respectively.


74A60 Micromechanical theories
74M25 Micromechanics of solids
74A20 Theory of constitutive functions in solid mechanics
74A15 Thermodynamics in solid mechanics
Full Text: DOI


[1] Achenbach, M.; Atanackovic, T.; Muller, I., Int. J. Solids Struct., 22, 171 (1986)
[2] Bondaryev, E. N.; Wayman, C. M., Metall. Trans. A, 19A, 2407 (1988)
[3] Christian, J. W., Metall. Trans. A, 13A, 509 (1982)
[4] Cohen, M.; Wayman, G. M., (Tien, J. K.; Elliott, J. F., Metallurgical Treatises (1981)), 445
[5] Cook, J. M., Ph.D. Thesis (1981), Cambridge University: Cambridge University Cambridge, U.K
[6] Delaey, L.; Krishnan, R. V.; Tas, H.; Warlimont, H., J. Mater. Sci., 9, 1521 (1974)
[7] Eshelby, J. D., (Proc. R. Soc. Lond., A241 (1957)), 376
[8] Falk, F., Acta Metall., 28, 1773 (1980)
[9] Hasiguti, R. R.; Iwasaki, K., J. appl. Phys., 39, 2182 (1968)
[10] Leblond, J. B.; Mottet, G.; Devaux, J. C., J. Mech. Phys. Solids, 34, 395 (1986)
[11] Mori, T.; Tanaka, K., Acta Metall., 21, 571 (1973)
[12] Mura, T., Micromechanics of Defects in Solids (1987), Martinus Nijhoff: Martinus Nijhoff Dordrecht
[13] Nakanishi, N.; Mori, T.; Miura, S.; Murakami, Y.; Kachi, S., Phil. Mag., 28, 277 (1973)
[14] Olson, G. B.; Cohen, M., Ser. Metall., 9, 1247 (1975)
[15] Olson, G. B.; Cohen, M., (Hubert; etal., Proceedings of the International Conference on Solid-Solid Phase Transformations (1981)), 1145-1164, Pittsburgh, PA, U.S.A.
[16] Otsuka, K.; Shimizu, K., Int. Metals Rev., 31, 93 (1986)
[17] Patoor, E.; Eberhardt, A.; Berveiller, M., Acta Metall., 35, 2779 (1987)
[18] Patoor, E.; Eberhardt, A.; Berveiller, M., Arch. Mech., 40, 775 (1988)
[19] Rice, J. R., J. Mech. Phys. Solids, 19, 433 (1971) · Zbl 0235.73002
[20] Sun, Q. P., Ph.D. Thesis (1989), Dept. of Eng. Mech., Tsinghua University
[21] Sun, Q. P.; Hwang, K. C.; Yu, S. W., J. Mech. Phys. Solids, 39, 507 (1991)
[22] Sun, Q. P.; Hwang, K. C., (Hutchinson, J. W.; Wu, T. Y., Advances in Applied Mechanics, Vol. 31 (1992), Academic Press: Academic Press New York), To appear in
[23] Tanaka, K.; Kobayashi, S.; Sato, Y., Int. J. Plasticity, 2, 59 (1986)
[24] Wayman, C. M., Phase Transformation in Solids, (Tsakalalos, Thomas, MRS Symposia Proceedings, Vol. 21 (1983), North Holland: North Holland Amsterdam), 657-667
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.