zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A diagonal quadratic approximation method for large scale linear programs. (English) Zbl 0767.90047
Summary: An augmented Lagrangian method is proposed for handling the common rows in large scale linear programming problems with block-diagonal structure and linking constraints. Using a diagonal quadratic approximation of the augmented Lagrangian one obtains subproblems that can be readily solved in parallel by a nonlinear primal-dual barrier method for convex separable programs. The combined augmented Lagrangian/barrier method applies in a natural way to stochastic programming and multicommodity networks.

90C05Linear programming
90C06Large-scale problems (mathematical programming)
90-08Computational methods (optimization)
90C15Stochastic programming
Full Text: DOI
[1] Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods. (1982) · Zbl 0572.90067
[2] Bertsekas, D.P.; Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods. (1989) · Zbl 0743.65107
[3] T.J. Carpenter, I.J. Lustig, J.M. Mulvey, and D.F. Shanno (forthcoming), ”Separable quadratic programming via primal-dual interior point method and its use in a sequential procedure”, to appear in ORSA J. Comput. · Zbl 0777.90038
[4] Choi, C.; Monma, C.L.; Shanno, D.F.: Further developments at a primal-dual interior point method. Report 60-88 (1988) · Zbl 0757.90051
[5] Findeisen, W.; Bailey, F.; Brdys{}, M.; Malinowski, K.; Tatjewski, P.; Wozniak, A.: Control and coordination in hierarchical systems. (1980) · Zbl 0385.93005
[6] Fortin, M.; Glowinski, R.: On decomposition-coordination methods using an augmented Lagrangian. Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems, 97-146 (1983) · Zbl 0525.65045
[7] Kennington, J.L.; Helgason, R.V.: Algorithms for network programming. (1980) · Zbl 0502.90056
[8] Lustig, I.J.; Marsten, R.E.; Shanno, D.F.: Computational experience with a primal-dual interior point method for linear programming. J. lin. Algebra appl. 152, 191-222 (1991) · Zbl 0731.65049
[9] Mulvey, J.M.; Vladimirou, H.: Applying the progressive hedging algorithm to stochastic generalized networks. Ann. oper. Res. 341, 399-424 (1991) · Zbl 0734.90033
[10] Rockafellar, R.T.; Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Math. oper. Res. 16, 1-23 (1991) · Zbl 0729.90067
[11] Ruszczyn{}ski, A.: An augmented Lagrangian decomposition method for block diagonal linear programming problems. Oper. res. Lett. 8, 287-294 (1989)
[12] Stephanopoulos, G.; Westerberg, W.: ’The use of hestenes’ method of multipliers to resolve dual gaps in engineering system optimization. J. optim. Theory appl. 15, 285-309 (1975) · Zbl 0278.49040
[13] Stoilov, E.: The augmented Lagrangian method in two-level static optimization. Arch. automat. Telemech. 22, 219-237 (1977)
[14] Tatjewski, P.: New dual-type decomposition algorithm for nonconvex separable optimization problems. Automatica 25, 233-242 (1989) · Zbl 0685.49023
[15] Vladimirou, H.: Stochastic networks: solutions methods and applications in financial planning. Ph.d. thesis (1990)