zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bernoulli numbers and polynomials of arbitrary complex indices. (English) Zbl 0768.11010
For complex $\alpha$ with $\text{Re }\alpha > 1$ the authors define the Bernoulli periodic function ${\cal B}\sb \alpha(x)$ with period 1 by the Fourier series $${\cal B}\sb \alpha = -2\Gamma(\alpha + 1)\sum\sp \infty\sb{k=1}{\cos(2\pi kx - \alpha\pi/2)\over (2\pi k)\sp \alpha},$$ and study its connection with the classical Bernoulli polynomials and Bernoulli numbers.

11B68Bernoulli and Euler numbers and polynomials
Full Text: DOI
[1] Berndt, B.C.: Ramanujan’s notebook, part I. (1985) · Zbl 0555.10001
[2] Butzer, P.L.; Hauss, M.; Schmidt, M.: Factorial functions and Stirling numbers of fractional orders. Resultate math. 16, 16-48 (1989) · Zbl 0707.05002
[3] Butzer, P.L.; Hauss, M.: On Stirling functions of the second kind. Stud. appl. Math. 84, 71-91 (1991) · Zbl 0738.11025
[4] Butzer, P.L.; Hauss, M.: Riemann zeta function: rapidly converging series and integral representations. Appl. math. Lett. 5, 83-88 (1992) · Zbl 0746.11034
[5] P.L. Butzer and M. Hauss, Eulerian numbers with fractional order parameters, Aequationes Math. (to appear). · Zbl 0797.11025
[6] Magnus, W.; Oberhettinger, F.; Soni, R.P.: Formulas and theorems for the special functions of mathematical physics. (1966) · Zbl 0143.08502
[7] Apostol, T.M.: Introduction to analytic number theory. (1976) · Zbl 0335.10001
[8] Butzer, P.L.; Nessel, R.J.: Fourier analysis and approximation. (1971) · Zbl 0217.42603
[9] Abou-Tair, I.A.: On a certain class of Dirichlet series. Appl. anal. 35, 205-219 (1990) · Zbl 0668.30004
[10] Berndt, B.C.: On the Hurwitz zeta-function. Rocky mountain J. Math. 2, 151-157 (1972) · Zbl 0229.10023
[11] Apostol, T.M.: Some series involving the reimann zeta function. Proc. amer. Math. soc. 5, 239-243 (1954) · Zbl 0055.06903