Discrete state-space modeling for linear \(n\)th-order constant coefficient distributed-parameter systems. (English) Zbl 0768.93005

Summary: A systematic procedure is developed for state-space modeling and solving the dynamic behavior of any linear \(n\) order constant coefficient distributed-parameter system with two or more independent variables. The state-space model is a set of first-order linear difference equations and is also referred to a discrete multidimensional state-space model. Transformation of a continuous distributed-parameter system into a discrete state-space model is based on the multidimensional Laplace- bilinear mapping technique. A procedure is outlined for converting the initial and boundary conditions of the system into a set of discrete conditions appropriate for the state-space model. Convergence of the state-space model’s solution to the exact solution depends on the sampling rates of the independent variables and the ratio of increments. A few examples when state-space modeling of a distributed-parameter system is useful are: to estimate optimal feedback or optimal feedforward gains in active control applications; model reference optimal-distributed tracking systems; optimal tracking of desired trajectories; real-time system identification.


93A30 Mathematical modelling of systems (MSC2010)
93C05 Linear systems in control theory
Full Text: DOI


[1] S. Attasi, ”Systems Linearies Homogenes a Deux Indices,”IRIA Rapport Laboria, no. 31, 1973. · Zbl 0278.65124
[2] R. Eising, ”Realization and Stabilization of 2-D Systems,”IEEE Trans. Auto. Contr., vol. AC-23, no. 5, pp. 793–799, 1978. · Zbl 0397.93022 · doi:10.1109/TAC.1978.1101861
[3] R. Eising, ”Controllability and Observability of 2-D Systems,”IEEE Trans. Auto. Contr., vol. AC-24, no. 1, pp. 132–133, 1979. · Zbl 0397.93023 · doi:10.1109/TAC.1979.1101955
[4] E. Fornasini and G. Marchesini, ”State-Space Realization Theory of Two-Dimensional Filters,”IEEE Trans. Auto. Contr., vol. AC-21, no. 4, pp. 484–492, 1976. · Zbl 0332.93072 · doi:10.1109/TAC.1976.1101305
[5] E. Fornasini and G. Marchesini, ”Doubly-Indexed Dynamical Systems: State-space Models and Structural Properties,”Math. Systems Theory, vol. 12, pp. 59–72, 1978. · Zbl 0392.93034 · doi:10.1007/BF01776566
[6] G.E. Forsyth and W.R. Wasow,Finite-Difference Methods for Partial-Differential Equations, John Wiley: New York, NY, 1960. · Zbl 0099.11103
[7] C.F. Gerald and P.O. Wheatley,Applied Numerical Analysis, Addison-Wesley: Reading, MA, 1984. · Zbl 0593.65002
[8] D.D. Givone and R.P. Roesser, ”Multidimensional Linear Iterative Circuits–General Properties,”IEEE Trans. Computers, vol. C-21, no. 10, pp. 1067–1073, 1972. · Zbl 0245.94016 · doi:10.1109/T-C.1972.223453
[9] D.D. Givone and R.P. Roesser, ”Minimization of Multidimensional Linear Iterative Circuits,”IEEE Trans. Computers, vol. C-22, no. 7, pp. 673–678, 1973. · Zbl 0256.94037 · doi:10.1109/TC.1973.5009134
[10] A.L. Hale and G.H. Rahm, ”Robust Control of Self-Adjoint Distributed-Parameter Structures,”AIAA Guidance and Control Conference, San Diego, CA, 1982.
[11] B.C. Kou,Digital Control Systems, Holt, Rinehart and Winston: New York, NY, 1980.
[12] S.Y. Kung, B.C. Levy, M. Morf and T. Kailath, ”New Results in 2-D System Theory, Part II: State-Space Model-Realization and the Notions of Controllability, Observability and Minimality,”Proc. IEEE, vol. 65, no. 6, pp. 945–961, 1977. · doi:10.1109/PROC.1977.10592
[13] H. Mahgoub, ”An Identification Procedure for 2-D Systems Using the Direct Method of Lyapunov,” D.Sc. Dissertation, School of Engineering and Applied Science, George Washington University, Washington, D.C., 1985.
[14] L. Meirovitch,Analytical Methods in Vibrations, The Macmillan Co.: New York, NY, 1967. · Zbl 0166.43803
[15] L. Meirovitch and H. Oz, ”Optimal Modal Space Control of Flexible Gyroscopic Systems,”AIAA Journal of Guidance and Control, vol. 3, no. 3, pp. 218–226, 1980. · Zbl 0433.49006 · doi:10.2514/3.55975
[16] M. Morf, B.C. Levy, and S.Y. Kung, ”New Results in 2-D System Theory, Part I: 2-D Polynomial Matrices, Factorization, and Coprimeness,”Proc. IEEE, vol. 65, no. 6, pp. 861–872, 1977. · doi:10.1109/PROC.1977.10582
[17] A. Moshfegh, ”Multidimensional Discrete State-space Modeling Optimal Control and Tracking of the Linear Distributed-Parameter Systems,” D.Sc. Dissertation, School of Engineering and Applied Science, George Washington University, Washington, D.C., 1990.
[18] D.A. Pierre and T.J. Higgins, ”Sample Data Representative System: An Effective Concept for Use in the Analysis and Design of Distributed-Parameter Systems,”ISA Trans, vol. 3, no. 3, 1964.
[19] R.P. Roesser, ”A Discrete State-Space Model for Linear Image Processing,”IEEE Trans. Auto. Contr., vol. AC-20, no. 1, pp. 1–10, 1975. · Zbl 0304.68099 · doi:10.1109/TAC.1975.1100844
[20] Y. Takahashi, ”Transfer Function Analysis of Heat Exchangers,”Automatic and Manual Control, pp. 235–248, 1952.
[21] H. Thal-Larsen, ”Dynamics of Heat Exchanges and Their Models,”Journal of Basic Engineering Trans. ASME, series D, vol. 82, pp. 489–504, 1960.
[22] S.G. Tzafestas and T.G. Pimenides, ”Exact Model Matching Control of Three-Dimensional Systems Using State and Output Feedback,”Inter. Journal Systems Sci., vol. 13, no. 11, pp. 1171–1187, 1982. · Zbl 0494.93026 · doi:10.1080/00207728208926421
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.