×

zbMATH — the first resource for mathematics

High-gain observers for non-linear systems. (English) Zbl 0768.93013
Summary: State estimation for nonlinear dynamic systems is discussed. A high-gain injection from the output variables is used to attenuate to any desired degree, the effect of the nonlinear terms on the estimation errors, which can be made arbitrarily small, from a particular observable form. Some Lyapunov arguments are used to study the stability properties of the resulting error dynamics. It is shown that any completely observable multi-input multi-output nonlinear system, not necessarily linear in the input variables, can be transformed, by means of a change of coordinates depending on the input variables, in such an observable form. In particular, the solvability of partial differential equations is not needed for the design of this transformation.

MSC:
93B07 Observability
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/00207178808906138 · Zbl 0648.93022 · doi:10.1080/00207178808906138
[2] ESFANDIARI , F. , and KHALIL , H. K. , 1987 , Observer design of uncertain systems recovering state feedback robustness under matching conditions, Proc. 1987 Allerton Conf.
[3] DOI: 10.1109/TAC.1981.1102743 · Zbl 0553.93014 · doi:10.1109/TAC.1981.1102743
[4] GOLDSTEIN H., Classical Mechanics (1950)
[5] DOI: 10.1080/00207178808906221 · Zbl 0657.93026 · doi:10.1080/00207178808906221
[6] DOI: 10.1109/TAC.1977.1101601 · Zbl 0396.93015 · doi:10.1109/TAC.1977.1101601
[7] ISIDORI A., Nonlinear Control Systems an introduction, (1989) · Zbl 0569.93034
[8] JAZWINSKI A., Stochastic Processes and Filtering Theory (1970) · Zbl 0203.50101
[9] KALMAN R., Proc. 1st IFAC International Congress (1960)
[10] DOI: 10.1016/0167-6911(83)90037-3 · Zbl 0524.93030 · doi:10.1016/0167-6911(83)90037-3
[11] DOI: 10.1137/0323016 · Zbl 0569.93035 · doi:10.1137/0323016
[12] DOI: 10.1016/0167-6911(86)90019-8 · Zbl 0592.93030 · doi:10.1016/0167-6911(86)90019-8
[13] DOI: 10.1109/TAC.1966.1098323 · doi:10.1109/TAC.1966.1098323
[14] DOI: 10.1080/00207178508933431 · Zbl 0609.93029 · doi:10.1080/00207178508933431
[15] MARINO R., Analysis and Control of Nonlinear Systems (1988)
[16] MIELCZARSKI W., Int. J. Control, 48 (1988)
[17] NICOSIA S., Proc. 26th I.E.E.E. Conf. on Decision and Control (1987)
[18] DOI: 10.1016/0167-6911(89)90121-7 · Zbl 0684.93054 · doi:10.1016/0167-6911(89)90121-7
[19] NICOSIA , S. , TORNAMBE A., and VALIGI , P. , 1990 , Experimental validation of asymptotic observers for robotic manipulators, Proc. 1989 Conf. on Robotics and Automation , Cincinnati , Ohio .
[20] NUMEIJER H., Ric. Autom., 12 pp 50– (1981)
[21] O’REILLY J., Observers for Linear Systems (1983)
[22] PETERSEN I. R., Proc. 25th I.E.E.E. Conf. On Decision and Control (1986)
[23] SABERI , A. , and SANNUTI , P. , 1988 , Observer design for loop transfer recovery and for uncertain dynamical systems, Proc, 1988 American Control Conf , Atlanta , Georgia . · Zbl 0723.93009
[24] SCHONWANDT U., Proc. IFAC Symp. On Identification (1969)
[25] DOI: 10.1007/BF01776584 · Zbl 0422.93019 · doi:10.1007/BF01776584
[26] TORNAMBE A., Control Theory Adv. Technol. 5 pp 189– (1989)
[27] DOI: 10.1109/TAC.1982.1103074 · Zbl 0491.93022 · doi:10.1109/TAC.1982.1103074
[28] DOI: 10.1016/0005-1098(77)90051-6 · Zbl 0351.93008 · doi:10.1016/0005-1098(77)90051-6
[29] WONHAM M. W., Linear Miillivariabie Control a Geometric Approach (1979) · doi:10.1007/978-1-4684-0068-7
[30] DOI: 10.1080/00207178808906076 · Zbl 0643.93011 · doi:10.1080/00207178808906076
[31] DOI: 10.1016/0167-6911(87)90021-1 · Zbl 0624.93012 · doi:10.1016/0167-6911(87)90021-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.