×

zbMATH — the first resource for mathematics

A structural analysis of the pole shifting problem. (English) Zbl 0768.93029
Summary: Pole assignability and stabilizability problems are investigated qualitatively. Both problems are first formulated algebraically and then translated to a structural setting via graph-theoretic formulations. Graphical sufficient conditions concerning the closed-loop system digraph which determine pole assignable and stabilizable structures are developed.
MSC:
93B55 Pole and zero placement problems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] C T. Lin: Structural controllability. IEEE Trans. Automat. Control 19 (1974), 201 - 208. · Zbl 0343.93009
[2] L. A. Trave A. Titli, A. Tarras: Large Scale Systems: Decentralization, Structure Constraints and Fixed Modes. Springer-Verlag, Berlin -Heidelberg-New York 1989. · Zbl 0687.93008 · doi:10.1007/BFb0043807
[3] K. J. Reinschke: Algebraic formulation of arbitrary pole assignability by static output feedback. Internat. J. Control 46 (1987), 1947-1977.
[4] A. Şefik: Structural Analysis of Pole Assignment and Stabilization in Dynamic Systems. Ph. D. Thesis, Bilkent University, Ankara 1989.
[5] R. W. Shields, J. B. Pearson: Structural controllability of multi-input linear systems. IEEE Trans. Automat. Control 21 (1976), 203-212. · Zbl 0324.93007 · doi:10.1109/TAC.1976.1101198
[6] F. Harary R. Z. Norman, D. Cartwright: Structural Models: An Introduction to the Theory of Directed Graphs. J. Wiley, New York 1965. · Zbl 0139.41503
[7] K. J. Reinschke: Graph-theoretic characterization of fixed modes in centralized and decentralized control. Internat. J. Control 39 (1984), 715 - 729. · Zbl 0537.93009 · doi:10.1080/00207178408933199
[8] E. J. Davison, R. Chatterjee: A note on pole assignment in linear systems with incomplete state feedback. IEEE Trans. Automat. Control 16 (1971), 98 - 99.
[9] M. E. Sezer, D. D. Šiljak: On structurally fixed modes. Proceedings of the IEEE Internat. Symp. on Circuits and Systems, Cnicago, Illinois 1981, pp. 558-565. · Zbl 0498.93007
[10] V. Pichai M. E. Sezer, D. D. Šiljak: A graph-theoretic characterization of structurally fixed modes. Automatica 20 (1984), 247 - 250. · Zbl 0535.93052 · doi:10.1016/0005-1098(84)90033-5
[11] F. M. Brasch, Jr., J. B. Pearson: Pole placement using dynamic compensation. IEEE Trans. Automat. Control 15 (1970), 34-43.
[12] H. Kimura: On pole assignment by output feedback. Internat. J. Control 28 (1978), 11 - 22. · Zbl 0392.93025 · doi:10.1080/00207177808922432
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.