Cao, Nan; Fu, Xianlong Controllability of semilinear neutral stochastic integrodifferential evolution systems with fractional Brownian motion. (English) Zbl 1525.45008 J. Integral Equations Appl. 34, No. 4, 409-432 (2022). Consider the following semilinear neutral integro-differential equations with state-dependent delay: \[ d \bigg[ x(t) + \int_0^t N(t-s) x(s) ds \bigg] = \bigg[ - A x(t) + \int_0^t \gamma(t-s) x(s) ds + f(t,x_t) + B u(t) \bigg] dt \] \[ + g(t,x_t) dW(t) + h(t,x_t) d B^H(t), \quad t \in [0,T]. \] Here \(-A\) is the generator of an analytic semigroup. Moreover, \(W\) is a \(Q\)-Wiener process and \(B^H\) is a fractional Brownian motion with Hurst parameter \(H \in (\frac{1}{2},1)\).The authors show that, under suitable conditions, the system admits a unique mild solution (see Theorem 3.4). Furthermore, it is shown that under appropriate conditions the system is approximately controllable on \([0, T ]\) (see Theorem 3.8). These results are proven by using the theory of analytic resolvent operators and the Banach fixed point theorem. An example is presented as well. Reviewer: Stefan Tappe (Freiburg) Cited in 1 Document MSC: 45J05 Integro-ordinary differential equations 45R05 Random integral equations 47G20 Integro-differential operators 47N20 Applications of operator theory to differential and integral equations 60G22 Fractional processes, including fractional Brownian motion 60H20 Stochastic integral equations 93B05 Controllability Keywords:approximate controllability; fractional Brownian motion; neutral integro-differential system; resolvent operator × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] H. M. Ahmed, “Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space”, Adv. Difference Equ. 2014 (2014), art. id. 113. · Zbl 1343.60080 · doi:10.1186/1687-1847-2014-113 [2] H. M. Ahmed, M. M. El-Borai, A. S. Okb El Bab, and M. Elsaid Ramadan, “Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion”, Bound. Value Probl. 2020 (2020), art. id. 120. · Zbl 1485.93055 · doi:10.1186/s13661-020-01418-0 [3] A. E. Bashirov and N. I. Mahmudov, “On concepts of controllability for deterministic and stochastic systems”, SIAM J. Control Optim. 37:6 (1999), 1808-1821. · Zbl 0940.93013 · doi:10.1137/S036301299732184X [4] T. Caraballo, M. J. Garrido-Atienza, and T. Taniguchi, “The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion”, Nonlinear Anal. 74:11 (2011), 3671-3684. · Zbl 1218.60053 · doi:10.1016/j.na.2011.02.047 [5] M. Chen, “Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motions”, Stoch. Dyn. 15:1 (2015), art. id. 1550005. · Zbl 1317.60076 · doi:10.1142/S0219493715500057 [6] R. F. Curtain and H. Zwart, An introduction to infinite-dimensional linear systems theory, Texts in Applied Mathematics 21, Springer, 1995. · Zbl 0839.93001 · doi:10.1007/978-1-4612-4224-6 [7] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, 1992. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223 [8] J. P. Dauer and N. I. Mahmudov, “Controllability of stochastic semilinear functional differential equations in Hilbert spaces”, J. Math. Anal. Appl. 290:2 (2004), 373-394. · Zbl 1038.60056 · doi:10.1016/j.jmaa.2003.09.069 [9] M. A. Diop, K. Ezzinbi, L.-M. Issaka, and K. Ramkumar, “Stability for some impulsive neutral stochastic functional integro-differential equations driven by fractional Brownian motion”, Cogent Math. Stat. 7:1 (2020), art. id. 1782120. · Zbl 1486.34144 · doi:10.1080/25742558.2020.1782120 [10] J. P. C. Dos Santos, H. Henríquez, and E. Hernández, “Existence results for neutral integro-differential equations with unbounded delay”, J. Integral Equations Appl. 23:2 (2011), 289-330. · Zbl 1228.45019 · doi:10.1216/JIE-2011-23-2-289 [11] T. E. Duncan, B. Pasik-Duncan, and B. Maslowski, “Fractional Brownian motion and stochastic equations in Hilbert spaces”, Stoch. Dyn. 2:2 (2002), 225-250. · Zbl 1040.60054 · doi:10.1142/S0219493702000340 [12] T. E. Duncan, J. Jakubowski, and B. Pasik-Duncan, “Stochastic integration for fractional Brownian motion in a Hilbert space”, Stoch. Dyn. 6:1 (2006), 53-75. · Zbl 1095.60017 · doi:10.1142/S0219493706001645 [13] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics 194, Springer, 2000. · Zbl 0952.47036 [14] K. Ezzinbi, H. Toure, and I. Zabsonre, “Local existence and regularity of solutions for some partial functional integrodifferential equations with infinite delay in Banach spaces”, Nonlinear Anal. 70:9 (2009), 3378-3389. · Zbl 1167.45008 · doi:10.1016/j.na.2008.05.006 [15] M. J. Garrido-Atienza, K. Lu, and B. Schmalfuss, “Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion”, Discrete Contin. Dyn. Syst. Ser. B 14:2 (2010), 473-493. · Zbl 1200.37075 · doi:10.3934/dcdsb.2010.14.473 [16] R. C. Grimmer, “Resolvent operators for integral equations in a Banach space”, Trans. Amer. Math. Soc. 273:1 (1982), 333-349. · Zbl 0493.45015 · doi:10.2307/1999209 [17] R. C. Grimmer and F. Kappel, “Series expansions for resolvents of Volterra integro-differential equations in Banach space”, SIAM J. Math. Anal. 15:3 (1984), 595-604. · Zbl 0538.45012 · doi:10.1137/0515045 [18] R. C. Grimmer and A. J. Pritchard, “Analytic resolvent operators for integral equations in Banach space”, J. Differential Equations 50:2 (1983), 234-259. · Zbl 0519.45011 · doi:10.1016/0022-0396(83)90076-1 [19] H. R. Henriquez and J. P. C. Dos Santos, “Differentiability of solutions of abstract neutral integro-differential equations”, J. Integral Equations Appl. 25:1 (2013), 47-77. · Zbl 1282.34079 · doi:10.1216/JIE-2013-25-1-47 [20] E. Hernández and D. O’Regan, “On a new class of abstract neutral integro-differential equations and applications”, Acta Appl. Math. 149 (2017), 125-137. · Zbl 1398.35284 · doi:10.1007/s10440-016-0090-1 [21] H. Huang and X. Fu, “Approximate controllability of semi-linear stochastic integro-differential equations with infinite delay”, IMA J. Math. Control Inform. 37:4 (2020), 1133-1167. · Zbl 1514.93029 · doi:10.1093/imamci/dnz040 [22] W. Jedidi, T. Simon, and M. Wang, “Density solutions to a class of integro-differential equations”, J. Math. Anal. Appl. 458:1 (2018), 134-152. · Zbl 1376.45007 · doi:10.1016/j.jmaa.2017.08.043 [23] K. Jeet and N. Sukavanam, “Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique”, Appl. Math. Comput. 364 (2020), art. id. 124690. · Zbl 1433.93018 · doi:10.1016/j.amc.2019.124690 [24] A. Lunardi, “On the linear heat equation with fading memory”, SIAM J. Math. Anal. 21:5 (1990), 1213-1224. · Zbl 0716.35031 · doi:10.1137/0521066 [25] Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics 1929, Springer, 2008. · Zbl 1138.60006 · doi:10.1007/978-3-540-75873-0 [26] D. Nualart, “Stochastic integration with respect to fractional Brownian motion and applications”, pp. 3-39 in Stochastic models (Mexico City, 2002), edited by J. M. González-Barrios et al., Contemp. Math. 336, Amer. Math. Soc., Providence, RI, 2003. · Zbl 1063.60080 · doi:10.1090/conm/336/06025 [27] D. Nualart, The Malliavin calculus and related topics, 2nd ed., Springer, 2006. · Zbl 1099.60003 [28] J. W. Nunziato, “On heat conduction in materials with memory”, Quart. Appl. Math. 29 (1971), 187-204. · Zbl 0227.73011 · doi:10.1090/qam/295683 [29] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44, Springer, 1983. · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1 [30] J. Prüss, Evolutionary integral equations and applications, Monographs in Mathematics 87, Birkhäuser, Basel, 1993. · Zbl 0784.45006 · doi:10.1007/978-3-0348-8570-6 [31] Y. Ren, X. Cheng, and R. Sakthivel, “Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fBm”, Appl. Math. Comput. 247 (2014), 205-212. · Zbl 1338.34157 · doi:10.1016/j.amc.2014.08.095 [32] R. Sakthivel, J. J. Nieto, and N. I. Mahmudov, “Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay”, Taiwanese J. Math. 14:5 (2010), 1777-1797. · Zbl 1220.93011 · doi:10.11650/twjm/1500406016 [33] G. Shevchenko, “Mixed fractional stochastic differential equations with jumps”, Stochastics 86:2 (2014), 203-217. · Zbl 1307.60087 · doi:10.1080/17442508.2013.774404 [34] A. Slama and A. Boudaoui, “Approximate controllability of retarded impulsive stochastic integro-differential equations driven by fractional Brownian motion”, Filomat 33:1 (2019), 289-306. · Zbl 1499.34394 · doi:10.2298/fil1901289s [35] Z. Taheri, S. Javadi, and E. Babolian, “Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method”, J. Comput. Appl. Math. 321 (2017), 336-347. · Zbl 1366.65006 · doi:10.1016/j.cam.2017.02.027 [36] P. Tamilalagan and P. Balasubramaniam, “Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators”, Internat. J. Control 90:8 (2017), 1713-1727. · Zbl 1367.93098 · doi:10.1080/00207179.2016.1219070 [37] T. Taniguchi, K. Liu, and A. Truman, “Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces”, J. Differential Equations 181:1 (2002), 72-91. · Zbl 1009.34074 · doi:10.1006/jdeq.2001.4073 [38] S. Tindel, C. A. Tudor, and F. Viens, “Stochastic evolution equations with fractional Brownian motion”, Probab. Theory Related Fields 127:2 (2003), 186-204. · Zbl 1036.60056 · doi:10.1007/s00440-003-0282-2 [39] V. Vijayakumar, “Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert spaces”, IMA J. Math. Control Inform. 35:1 (2018), 297-314. · Zbl 1402.93056 · doi:10.1093/imamci/dnw049 [40] Q. Wu, L. Hu, and Z. Zhang, “Convergence and stability of balanced methods for stochastic delay integro-differential equations”, Appl. Math. Comput. 237 (2014), 446-460. · Zbl 1334.65017 · doi:10.1016/j.amc.2014.03.118 [41] X. Zhou, D. Zhou, and S. Zhong, “Existence and exponential stability in the \[p\] th moment for impulsive neutral stochastic integro-differential equations driven by mixed fractional Brownian motion”, J. Inequal. Appl. 2019 (2019), art. id. 262. · Zbl 1499.60233 · doi:10.1186/s13660-019-2213-5 [42] J. Zhu and X. Fu, “Existence results for neutral integro-differential equations with nonlocal conditions”, J. Integral Equations Appl. 32:2 (2020), 239-258. · Zbl 1465.45011 · doi:10.1216/jie.2020.32.239 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.