×

Logarithmic heat kernel estimates without curvature restrictions. (English) Zbl 1534.58020

Summary: The main results of the article are short time estimates and asymptotic estimates for the first two order derivatives of the logarithmic heat kernel of a complete Riemannian manifold. We remove all curvature restrictions and also develop several techniques.
A basic tool developed here is intrinsic stochastic variations with prescribed second order covariant differentials, allowing to obtain a path integration representation for the second order derivatives of the heat semigroup \({P_t}\) on a complete Riemannian manifold, again without any assumptions on the curvature. The novelty is the introduction of an \({\epsilon^2}\) term in the variation allowing greater control. We also construct a family of cut-off stochastic processes adapted to an exhaustion by compact subsets with smooth boundaries, each process is constructed path by path and differentiable in time. Furthermore, the differentials have locally uniformly bounded moments with respect to the Brownian motion measures, allowing to bypass the lack of continuity of the exit time of the Brownian motions on its initial position.

MSC:

58J65 Diffusion processes and stochastic analysis on manifolds
58J70 Invariance and symmetry properties for PDEs on manifolds
60H15 Stochastic partial differential equations (aspects of stochastic analysis)

References:

[1] AIDA, S. (2000). Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces. J. Funct. Anal. 174 430-477. · Zbl 0968.58026 · doi:10.1006/jfan.2000.3592
[2] AIDA, S. (2004). Precise Gaussian estimates of heat kernels on asymptotically flat Riemannian manifolds with poles. In Recent Developments in Stochastic Analysis and Related Topics 1-19. World Sci. Publ., Hackensack, NJ.
[3] AIDA, S. (2015). Asymptotics of spectral gaps on loop spaces over a class of Riemannian manifolds. J. Funct. Anal. 269 3714-3764. · Zbl 1349.58016 · doi:10.1016/j.jfa.2015.09.023
[4] AIRAULT, H. and MALLIAVIN, P. (1992). Integration on loop groups. II. Heat equation for the Wiener measure. J. Funct. Anal. 104 71-109. · Zbl 0787.22021 · doi:10.1016/0022-1236(92)90091-V
[5] AIRAULT, H., MALLIAVIN, P. and REN, J. (1999). Smoothness of stopping times of diffusion processes. J. Math. Pures Appl. (9) 78 1069-1091. · Zbl 0958.60054 · doi:10.1016/S0021-7824(99)00026-4
[6] ARNAUDON, M., PLANK, H. and THALMAIER, A. (2003). A Bismut type formula for the Hessian of heat semigroups. C. R. Math. Acad. Sci. Paris 336 661-666. · Zbl 1038.60043 · doi:10.1016/S1631-073X(03)00123-7
[7] Azencott, R. (1980). Grandes déviations et applications. In Eighth Saint Flour Probability Summer School—1978 (Saint Flour, 1978). Lecture Notes in Math. 774 1-176. Springer, Berlin. · Zbl 0435.60028
[8] AZENCOTT, R., ed. (1981). Géodésiques et diffusions en temps petit, sm´inaire de probabilitś universitďe Paris VII, Asterisque 84-85, Ch. 5 by L. Elie and Ch. IX by C. Bellaiche. Math. Soc. France.
[9] BALL, K., BARTHE, F., BEDNORZ, W., OLESZKIEWICZ, K. and WOLFF, P. (2013). \[{L^1}\]-smoothing for the Ornstein-Uhlenbeck semigroup. Mathematika 59 160-168. · Zbl 1267.47066 · doi:10.1112/S0025579312001064
[10] Ben Arous, G. (1988). Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. Sci. Éc. Norm. Supér. (4) 21 307-331. · Zbl 0699.35047
[11] BEN AROUS, G. and LÉANDRE, R. (1991). Décroissance exponentielle du noyau de la chaleur sur la diagonale. I. Probab. Theory Related Fields 90 175-202. · Zbl 0734.60026 · doi:10.1007/BF01192161
[12] BISMUT, J.-M. (1984). Large Deviations and the Malliavin Calculus. Progress in Mathematics 45. Birkhäuser, Inc., Boston, MA. · Zbl 0537.35003
[13] CHEEGER, J., GROMOV, M. and TAYLOR, M. (1982). Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom. 17 15-53. · Zbl 0493.53035
[14] CHEEGER, J. and YAU, S. T. (1981). A lower bound for the heat kernel. Comm. Pure Appl. Math. 34 465-480. · Zbl 0481.35003 · doi:10.1002/cpa.3160340404
[15] CHEN, X., LI, X.-M. and WU, B. Stochastic analysis on loop space over general Riemannian manifold. Preprint.
[16] CHEN, X., LI, X.-M. and WU, B. (2010). A Poincaré inequality on loop spaces. J. Funct. Anal. 259 1421-1442. · Zbl 1228.58017 · doi:10.1016/j.jfa.2010.05.006
[17] CHEN, X., LI, X.-M. and WU, B. (2011). A concrete estimate for the weak Poincaré inequality on loop space. Probab. Theory Related Fields 151 559-590. · Zbl 1245.58017 · doi:10.1007/s00440-010-0308-5
[18] CHEN, X. and WU, B. (2014). Functional inequality on path space over a non-compact Riemannian manifold. J. Funct. Anal. 266 6753-6779. · Zbl 1307.58014 · doi:10.1016/j.jfa.2014.03.017
[19] CHENG, S. Y., LI, P. and YAU, S. T. (1981). On the upper estimate of the heat kernel of a complete Riemannian manifold. Amer. J. Math. 103 1021-1063. · Zbl 0484.53035 · doi:10.2307/2374257
[20] DAVIES, E. B. (1989). Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92. Cambridge Univ. Press, Cambridge. · doi:10.1017/CBO9780511566158
[21] DRIVER, B. K. (1992). A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold. J. Funct. Anal. 110 272-376. · Zbl 0765.60064 · doi:10.1016/0022-1236(92)90035-H
[22] DRIVER, B. K. (1994). A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold. Trans. Amer. Math. Soc. 342 375-395. · Zbl 0792.60013 · doi:10.2307/2154699
[23] EBERLE, A. (2001). Local Poincaré inequalities on loop spaces. C. R. Acad. Sci. Paris Sér. I Math. 333 1023-1028. · Zbl 1007.58020 · doi:10.1016/S0764-4442(01)02174-7
[24] EBERLE, A. (2002). Absence of spectral gaps on a class of loop spaces. J. Math. Pures Appl. (9) 81 915-955. · Zbl 1029.58026 · doi:10.1016/S0021-7824(02)01260-6
[25] EELLS, J. and ELWORTHY, K. D. (1971). On Fredholm manifolds. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 215-219. Gauthier-Villars, Paris. · Zbl 0225.58002
[26] ELDAN, R. and LEE, J. R. (2015). Talagrand’s convolution conjecture on Gaussian space. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science—FOCS 2015 1395-1408. IEEE Computer Soc., Los Alamitos, CA.
[27] ELWORTHY, K. D. (1978). Stochastic dynamical systems and their flows. In Stochastic Analysis (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1978) 79-95. Academic Press, New York. · Zbl 0439.60065
[28] ELWORTHY, K. D. (1982). Stochastic Differential Equations on Manifolds. London Mathematical Society Lecture Note Series 70. Cambridge Univ. Press, Cambridge. · Zbl 0514.58001
[29] ELWORTHY, K. D., LE JAN, Y. and LI, X.-M. (1999). On the Geometry of Diffusion Operators and Stochastic Flows. Lecture Notes in Math. 1720. Springer, Berlin. · Zbl 0942.58004 · doi:10.1007/BFb0103064
[30] ELWORTHY, K. D. and LI, X.-M. (1994). Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 252-286. · Zbl 0813.60049 · doi:10.1006/jfan.1994.1124
[31] ELWORTHY, K. D. and LI, X.-M. (1994). Differentiation of heat semigroups and applications. In Probability Theory and Mathematical Statistics (Vilnius, 1993) 239-251. TEV, Vilnius. · Zbl 0851.60058
[32] ELWORTHY, K. D. and LI, X.-M. (1996). A class of integration by parts formulae in stochastic analysis. I. In Itô’s Stochastic Calculus and Probability Theory 15-30. Springer, Tokyo. · Zbl 0881.60052
[33] ENGOULATOV, A. (2006). A universal bound on the gradient of logarithm of the heat kernel for manifolds with bounded Ricci curvature. J. Funct. Anal. 238 518-529. · Zbl 1246.58021 · doi:10.1016/j.jfa.2006.02.013
[34] FANG, S. and MALLIAVIN, P. (1993). Stochastic analysis on the path space of a Riemannian manifold. I. Markovian stochastic calculus. J. Funct. Anal. 118 249-274. · Zbl 0798.58080 · doi:10.1006/jfan.1993.1145
[35] GONG, F., RÖCKNER, M. and WU, L. (2001). Poincaré inequality for weighted first order Sobolev spaces on loop spaces. J. Funct. Anal. 185 527-563. · Zbl 1011.60060 · doi:10.1006/jfan.2001.3775
[36] GONG, F.-Z. and MA, Z.-M. (1998). The log-Sobolev inequality on loop space over a compact Riemannian manifold. J. Funct. Anal. 157 599-623. · Zbl 0909.22036 · doi:10.1006/jfan.1998.3263
[37] GOZLAN, N., LI, X.-M., MADIMAN, M., ROBERTO, C. and SAMSON, P. M. (2021). Log-Hessian and deviation bounds for Markov semi-groups, and regularization effect in \[{\mathbb{L}^1} \]. Potential Anal.. Available at arXiv:1907.10896. · Zbl 1506.60028 · doi:10.1007/s11118-021-09934-z
[38] GREENE, R. E. and WU, H. (1979). Function Theory on Manifolds Which Possess a Pole. Lecture Notes in Math. 699. Springer, Berlin. · Zbl 0414.53043
[39] GROSS, L. (1975). Logarithmic Sobolev inequalities. Amer. J. Math. 97 1061-1083. · Zbl 0318.46049 · doi:10.2307/2373688
[40] GROSS, L. (1991). Logarithmic Sobolev inequalities on loop groups. J. Funct. Anal. 102 268-313. · Zbl 0742.22003 · doi:10.1016/0022-1236(91)90123-M
[41] HAMILTON, R. S. (1993). A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1 113-126. · Zbl 0799.53048 · doi:10.4310/CAG.1993.v1.n1.a6
[42] HSU, E. P. (1999). Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. Amer. Math. Soc. 127 3739-3744. · Zbl 0948.58025 · doi:10.1090/S0002-9939-99-04967-9
[43] HSU, E. P. (2002). Stochastic Analysis on Manifolds. Graduate Studies in Mathematics 38. Amer. Math. Soc., Providence, RI. · doi:10.1090/gsm/038
[44] HSU, E. P. and OUYANG, C. (2009). Quasi-invariance of the Wiener measure on the path space over a complete Riemannian manifold. J. Funct. Anal. 257 1379-1395. · Zbl 1173.58015 · doi:10.1016/j.jfa.2009.05.017
[45] HSU, P. (1990). Heat kernel on noncomplete manifolds. Indiana Univ. Math. J. 39 431-442. · Zbl 0689.58033 · doi:10.1512/iumj.1990.39.39023
[46] KOTSCHWAR, B. L. (2007). Hamilton’s gradient estimate for the heat kernel on complete manifolds. Proc. Amer. Math. Soc. 135 3013-3019. · Zbl 1127.58021 · doi:10.1090/S0002-9939-07-08837-5
[47] LEHEC, J. (2016). Regularization in \[{L_1}\] for the Ornstein-Uhlenbeck semigroup. Ann. Fac. Sci. Toulouse Math. (6) 25 191-204. · Zbl 1336.60032 · doi:10.5802/afst.1492
[48] LI, P. and YAU, S.-T. (1986). On the parabolic kernel of the Schrödinger operator. Acta Math. 156 153-201. · Zbl 0611.58045 · doi:10.1007/BF02399203
[49] LI, X.-D. (2016). Hamilton’s Harnack inequality and the \(W\)-entropy formula on complete Riemannian manifolds. Stochastic Process. Appl. 126 1264-1283. · Zbl 1332.58011 · doi:10.1016/j.spa.2015.11.002
[50] LI, X.-M. (1992). Stochastic differential equations on noncompact manifolds. Thesis, Univ. Warwick.
[51] LI, X.-M. (1994). Strong \(p\)-completeness of stochastic differential equations and the existence of smooth flows on noncompact manifolds. Probab. Theory Related Fields 100 485-511. · Zbl 0815.60050 · doi:10.1007/BF01268991
[52] LI, X.-M. (2018). Generalised Brownian bridges: Examples. Markov Process. Related Fields 24 151-163. · Zbl 1417.60031
[53] LI, X.-M. (2018). Doubly damped stochastic parallel translations and Hessian formulas. In Stochastic Partial Differential Equations and Related Fields. Springer Proc. Math. Stat. 229 345-357. Springer, Cham. · Zbl 1403.60056 · doi:10.1007/978-3-319-74929-7_2
[54] LI, X.-M. (2021). Hessian formulas and estimates for parabolic Schrödinger operators. J. Stoch. Anal. 2 Art. 7, 53 pp.
[55] LI, X.-M. and SCHEUTZOW, M. (2011). Lack of strong completeness for stochastic flows. Ann. Probab. 39 1407-1421. · Zbl 1235.60066 · doi:10.1214/10-AOP585
[56] LI, X.-M. and THOMPSON, J. (2018). First order Feynman-Kac formula. Stochastic Process. Appl. 128 3006-3029. · Zbl 1405.60123 · doi:10.1016/j.spa.2017.10.010
[57] MALLIAVIN, P. (1978). Géométrie Différentielle Stochastique. Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics] 64. Presses de l’Université de Montréal, Montreal, Que. Notes prepared by Danièle Dehen and Dominique Michel. · Zbl 0393.60062
[58] MALLIAVIN, P. (1999). The canonic diffusion above the diffeomorphism group of the circle. C. R. Acad. Sci. Paris Sér. I Math. 329 325-329. · Zbl 1006.60073 · doi:10.1016/S0764-4442(00)88575-4
[59] MALLIAVIN, P. and STROOCK, D. W. (1996). Short time behavior of the heat kernel and its logarithmic derivatives. J. Differential Geom. 44 550-570. · Zbl 0873.58063
[60] MOLČANOV, S. A. (1975). Diffusion processes, and Riemannian geometry. Uspekhi Mat. Nauk 30 3-59. · Zbl 0305.53041
[61] NEEL, R. (2007). The small-time asymptotics of the heat kernel at the cut locus. Comm. Anal. Geom. 15 845-890. · Zbl 1154.58020
[62] NORRIS, J. R. (1993). Path integral formulae for heat kernels and their derivatives. Probab. Theory Related Fields 94 525-541. · Zbl 0791.58112 · doi:10.1007/BF01192562
[63] SETTI, A. G. (1993). Eigenvalue estimates for the Laplacian with lower order terms on a compact Riemannian manifold. In Differential Geometry: Riemannian Geometry (Los Angeles, CA, 1990). Proc. Sympos. Pure Math. 54 521-527. Amer. Math. Soc., Providence, RI. · Zbl 0788.58056
[64] Sheu, S. J. (1991). Some estimates of the transition density of a nondegenerate diffusion Markov process. Ann. Probab. 19 538-561. · Zbl 0738.60060
[65] SOUPLET, P. and ZHANG, Q. S. (2006). Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 38 1045-1053. · Zbl 1109.58025 · doi:10.1112/S0024609306018947
[66] STROOCK, D. W. (1996). An estimate on the Hessian of the heat kernel. In Itô’s Stochastic Calculus and Probability Theory 355-371. Springer, Tokyo. · Zbl 0868.58075
[67] THALMAIER, A. (1997). On the differentiation of heat semigroups and Poisson integrals. Stoch. Stoch. Rep. 61 297-321. · Zbl 0897.60064 · doi:10.1080/17442509708834123
[68] THALMAIER, A. and WANG, F.-Y. (1998). Gradient estimates for harmonic functions on regular domains in Riemannian manifolds. J. Funct. Anal. 155 109-124. · Zbl 0914.58042 · doi:10.1006/jfan.1997.3220
[69] THOMPSON, J. (2019). Derivatives of Feynman-Kac semigroups. J. Theoret. Probab. 32 950-973. · Zbl 1482.58020 · doi:10.1007/s10959-018-0824-2
[70] VARADHAN, S. R. S. (1966). Asymptotic probabilities and differential equations. Comm. Pure Appl. Math. 19 261-286. · Zbl 0147.15503 · doi:10.1002/cpa.3160190303
[71] VARADHAN, S. R. S. (1967). Diffusion processes in a small time interval. Comm. Pure Appl. Math. 20 659-685. · Zbl 0278.60051 · doi:10.1002/cpa.3160200404
[72] VAROPOULOS, N. T. (1989). Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique. Bull. Sci. Math. 113 253-277. · Zbl 0703.58052
[73] VAROPOULOS, N. T. (1990). Small time Gaussian estimates of heat diffusion kernels. II. The theory of large deviations. J. Funct. Anal. 93 1-33 · Zbl 0712.58056 · doi:10.1016/0022-1236(90)90136-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.