Hutchcroft, Tom; Michta, Emmanuel; Slade, Gordon High-dimensional near-critical percolation and the torus plateau. (English) Zbl 1532.60216 Ann. Probab. 51, No. 2, 580-625 (2023). Summary: We consider percolation on \({\mathbb{Z}^d}\) and on the \(d\)-dimensional discrete torus, in dimensions \(d\ge 11\) for the nearest-neighbour model and in dimensions \(d > 6\) for spread-out models. For \({\mathbb{Z}^d}\) we employ a wide range of techniques and previous results to prove that there exist positive constants \(c\) and \(C\) such that the slightly subcritical two-point function and one-arm probabilities satisfy \[ \begin{aligned} \mathbb{P}_{p_{c} -\varepsilon} (0\leftrightarrow x) &\le \frac{C}{\| x{\|^{d-2}}}{e^{-c{\varepsilon^{1/2}}\| x\|}},\\ \frac{c}{{r^2}}{e^{-C{\varepsilon^{1/2}}r}} &\le {\mathbb{P}_{{p_c}-\varepsilon}}(0\leftrightarrow \partial{[-r,r]^d})\le \frac{C}{{r^2}}{e^{-c{\varepsilon^{1/2}}r}}. \end{aligned} \] Using this, we prove that throughout the critical window the torus two-point function has a “plateau,” meaning that it decays for small \(x\) as \(\| x{\|^{-(d-2)}}\) but for large \(x\) is essentially constant and of order \({V^{-2/3}}\) where \(V\) is the volume of the torus. The plateau for the two-point function leads immediately to a proof of the torus triangle condition, which is known to have many implications for the critical behaviour on the torus, and also leads to a proof that the critical values on the torus and on \({\mathbb{Z}^d}\) are separated by a multiple of \({V^{-1/3}}\). The torus triangle condition and the size of the separation of critical points have been proved previously, but our proofs are different and are direct consequences of the bound on the \({\mathbb{Z}^d}\) two-point function. In particular, we use results derived from the lace expansion on \({\mathbb{Z}^d}\), but in contrast to previous work on high-dimensional torus percolation, we do not need or use a separate torus lace expansion. Cited in 8 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82B27 Critical phenomena in equilibrium statistical mechanics 05C80 Random graphs (graph-theoretic aspects) 82B43 Percolation Keywords:lace expansion; one-arm exponent; percolation; torus plateau; triangle condition; two-point function × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] AIZENMAN, M. (1997). On the number of incipient spanning clusters. Nuclear Phys. B 485 551-582. · Zbl 0925.82112 · doi:10.1016/S0550-3213(96)00626-8 [2] AIZENMAN, M. and NEWMAN, C. M. (1984). Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36 107-143. · Zbl 0586.60096 · doi:10.1007/BF01015729 [3] BARSKY, D. J. and AIZENMAN, M. (1991). Percolation critical exponents under the triangle condition. Ann. Probab. 19 1520-1536. · Zbl 0747.60093 [4] BENJAMINI, I. and SCHRAMM, O. (1996). Percolation beyond \[{Z^d}\], many questions and a few answers. Electron. Commun. Probab. 1 71-82. · Zbl 0890.60091 · doi:10.1214/ECP.v1-978 [5] BORGS, C., CHAYES, J. T., VAN DER HOFSTAD, R., SLADE, G. and SPENCER, J. (2005). Random subgraphs of finite graphs. I. The scaling window under the triangle condition. Random Structures Algorithms 27 137-184. · Zbl 1076.05071 · doi:10.1002/rsa.20051 [6] BORGS, C., CHAYES, J. T., VAN DER HOFSTAD, R., SLADE, G. and SPENCER, J. (2005). Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33 1886-1944. · Zbl 1079.05087 · doi:10.1214/009117905000000260 [7] BORGS, C., CHAYES, J. T., VAN DER HOFSTAD, R., SLADE, G. and SPENCER, J. (2006). Random subgraphs of finite graphs. III. The phase transition for the \(n\)-cube. Combinatorica 26 395-410. · Zbl 1121.05108 · doi:10.1007/s00493-006-0022-1 [8] BORGS, C., CHAYES, J. T., KESTEN, H. and SPENCER, J. (1999). Uniform boundedness of critical crossing probabilities implies hyperscaling. Random Structures Algorithms 15 368-413. · Zbl 0940.60089 [9] CAMIA, F., JIANG, J. and NEWMAN, C. M. (2021). The effect of free boundary conditions on the Ising model in high dimensions. Probab. Theory Related Fields 181 311-328. · Zbl 1489.60153 · doi:10.1007/s00440-021-01041-9 [10] CAMPANINO, M., CHAYES, J. T. and CHAYES, L. (1991). Gaussian fluctuations of connectivities in the subcritical regime of percolation. Probab. Theory Related Fields 88 269-341. · Zbl 0691.60090 · doi:10.1007/BF01418864 [11] CHATTERJEE, S. and HANSON, J. (2020). Restricted percolation critical exponents in high dimensions. Comm. Pure Appl. Math. 73 2370-2429. · Zbl 1453.82033 · doi:10.1002/cpa.21938 [12] CHATTERJEE, S., HANSON, J. and SOSOE, P. (2021). Subcritical connectivity and some exact tail exponents in high dimensional percolation. Preprint. Available at https://arxiv.org/pdf/2107.14347. [13] CHAYES, J. T. and CHAYES, L. (1987). On the upper critical dimension of Bernoulli percolation. Comm. Math. Phys. 113 27-48. · Zbl 0627.60100 [14] CHEN, L.-C. and SAKAI, A. (2015). Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. 43 639-681. · Zbl 1342.60162 · doi:10.1214/13-AOP843 [15] DUMINIL-COPIN, H., RAOUFI, A. and TASSION, V. (2019). Sharp phase transition for the random-cluster and Potts models via decision trees. Ann. of Math. (2) 189 75-99. · Zbl 1482.82009 · doi:10.4007/annals.2019.189.1.2 [16] ESSAM, J. W., GAUNT, D. S. and GUTTMANN, A. J. (1978). Percolation theory at the critical dimension. J. Phys. A: Math. Gen. 11 1983-1990. [17] FITZNER, R. and VAN DER HOFSTAD, R. (2017). Mean-field behavior for nearest-neighbor percolation in \[d\textgreater 10\]. Electron. J. Probab. 22 Paper No. 43. · Zbl 1364.60130 · doi:10.1214/17-EJP56 [18] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin. · Zbl 0926.60004 · doi:10.1007/978-3-662-03981-6 [19] HARA, T. (1990). Mean-field critical behaviour for correlation length for percolation in high dimensions. Probab. Theory Related Fields 86 337-385. · Zbl 0685.60102 · doi:10.1007/BF01208256 [20] HARA, T. (2008). Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36 530-593. · Zbl 1142.82006 · doi:10.1214/009117907000000231 [21] HARA, T., VAN DER HOFSTAD, R. and SLADE, G. (2003). Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 349-408. · Zbl 1044.82006 · doi:10.1214/aop/1046294314 [22] HARA, T. and SLADE, G. (1990). Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 333-391. · Zbl 0698.60100 [23] HARA, T. and SLADE, G. (1994). Mean-field behaviour and the lace expansion. In Probability and Phase Transition (Cambridge, 1993) (G. Grimmett, ed.). NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 420 87-122. Kluwer Academic, Dordrecht. · Zbl 0831.60107 [24] HEYDENREICH, M. and VAN DER HOFSTAD, R. (2007). Random graph asymptotics on high-dimensional tori. Comm. Math. Phys. 270 335-358. · Zbl 1128.82010 · doi:10.1007/s00220-006-0152-8 [25] HEYDENREICH, M. and VAN DER HOFSTAD, R. (2011). Random graph asymptotics on high-dimensional tori II: Volume, diameter and mixing time. Probab. Theory Related Fields 149 397-415. Correction: Probab. Theory Related Fields, 175:1183-1185, (2019). · Zbl 1229.60108 · doi:10.1007/s00440-009-0258-y [26] HEYDENREICH, M. and VAN DER HOFSTAD, R. (2017). Progress in High-Dimensional Percolation and Random Graphs. CRM Short Courses. Springer, Cham. · Zbl 1445.60003 [27] HEYDENREICH, M., VAN DER HOFSTAD, R. and SAKAI, A. (2008). Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132 1001-1049. · Zbl 1152.82007 · doi:10.1007/s10955-008-9580-5 [28] van der Hofstad, R. and Nachmias, A. (2017). Hypercube percolation. J. Eur. Math. Soc. (JEMS) 19 725-814. · Zbl 1381.60119 · doi:10.4171/JEMS/679 [29] VAN DER HOFSTAD, R. and SAPOZHNIKOV, A. (2014). Cycle structure of percolation on high-dimensional tori. Ann. Inst. Henri Poincaré Probab. Stat. 50 999-1027. · Zbl 1297.05222 · doi:10.1214/13-AIHP565 [30] Hulshof, T. and Nachmias, A. (2020). Slightly subcritical hypercube percolation. Random Structures Algorithms 56 557-593. · Zbl 1436.60081 · doi:10.1002/rsa.20853 [31] HUTCHCROFT, T. (2020). New critical exponent inequalities for percolation and the random cluster model. Probab. Math. Phys. 1 147-165. · Zbl 1487.60184 · doi:10.2140/pmp.2020.1.147 [32] HUTCHCROFT, T. (2020). Locality of the critical probability for transitive graphs of exponential growth. Ann. Probab. 48 1352-1371. · Zbl 1506.60107 · doi:10.1214/19-AOP1395 [33] HUTCHCROFT, T. (2022). Slightly supercritical percolation on nonamenable graphs I: The distribution of finite clusters. Proc. Lond. Math. Soc. Online first. Available at https://doi.org/10.1112/plms.12474. · Zbl 1528.60099 [34] HUTCHCROFT, T. (2022). On the derivation of mean-field percolation critical exponents from the triangle condition. J. Stat. Phys. 189 Paper No. 6. · Zbl 1495.82012 · doi:10.1007/s10955-022-02967-7 [35] KANNAN, R. and KRUEGER, C. K. (1996). Advanced Analysis on the Real Line. Universitext. Springer, New York. · Zbl 0855.26001 [36] Kozma, G. and Nachmias, A. (2009). The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178 635-654. · Zbl 1180.82094 · doi:10.1007/s00222-009-0208-4 [37] KOZMA, G. and NACHMIAS, A. (2011). Arm exponents in high dimensional percolation. J. Amer. Math. Soc. 24 375-409. · Zbl 1219.60085 · doi:10.1090/S0894-0347-2010-00684-4 [38] Lawler, G. F. and Limic, V. (2010). Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics 123. Cambridge Univ. Press, Cambridge. · Zbl 1210.60002 · doi:10.1017/CBO9780511750854 [39] MENSHIKOV, M. V. (1986). Coincidence of critical points in percolation problems. Sov. Math., Dokl. 33 856-859. · Zbl 0615.60096 [40] MICHTA, E. and SLADE, G. (2021). Weakly self-avoiding walk on a high-dimensional torus. Preprint. Available at https://arxiv.org/pdf/2107.14170. [41] MICHTA, E. and SLADE, G. (2022). Asymptotic behaviour of the lattice Green function. ALEA Lat. Am. J. Probab. Math. Stat. 19 957-981. · Zbl 1515.60324 · doi:10.30757/alea.v19-38 [42] O’DONNELL, R., SAKS, M., SCHRAMM, O. and SERVEDIO, R. A. (2005). Every decision tree has an influential variable. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 31-39. IEEE, New York. [43] PAPATHANAKOS, V. (2006). Finite-Size Effects in High-Dimensional Statistical Mechanical Systems: The Ising Model with Periodic Boundary Conditions. Ph.D. thesis, Princeton Univ. [44] SLADE, G. (2006). The Lace Expansion and Its Applications. Lecture Notes in Math. 1879. Springer, Berlin. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6-24, 2004, Edited and with a foreword by Jean Picard. · Zbl 1113.60005 [45] SLADE, G. (2020). The near-critical two-point function and the torus plateau for weakly self-avoiding walk in high dimensions. Preprint. Available at https://arxiv.org/pdf/2008.00080. [46] Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 239-244. · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7 [47] SMIRNOV, S. and WERNER, W. (2001). Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 729-744. · Zbl 1009.60087 · doi:10.4310/MRL.2001.v8.n6.a4 [48] TASAKI, H. (1987). Hyperscaling inequalities for percolation. Comm. Math. Phys. 113 49-65. · Zbl 0627.60101 [49] TOULOUSE, G. (1974). Perspectives from the theory of phase transitions. Nuovo Cimento 23B 234-240. [50] VANNEUVILLE, H. (2022). Sharpness of Bernoulli percolation via couplings. Preprint. Available at https://arxiv.org/pdf/2201.08223.pdf. [51] ZHOU, Z., GRIMM, J., DENG, Y. and GARONI, T. M. (2020). Random-length random walks and finite-size scaling on high-dimensional hypercubic lattices I: Periodic boundary conditions. Preprint. Available at https://arxiv.org/pdf/2008.00913. [52] ZHOU, Z., GRIMM, J., FANG, S., DENG, Y. and GARONI, T. M. (2018). Random-length random walks and finite-size scaling in high dimensions. Phys. Rev. Lett. 121 185701 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.