×

zbMATH — the first resource for mathematics

Type semigroups and factorization problems. (Typenhalbgruppen und Faktorisierungsprobleme.) (German) Zbl 0769.11039
The author presents a general scheme systematizing much of previous investigations [see e.g. the reviewer, Elementary and analytic theory of algebraic numbers (2nd ed.) (Springer 1990; Zbl 0717.11045), and the literature quoted there] dealing with several aspects of non-unique factorization in algebraic number fields. This approach is used to obtain new proofs of old results and several new quantitative results concerning numbers with unique factorization in a given field.

MSC:
11R27 Units and factorization
20M14 Commutative semigroups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. G. Chouinard II, Krull semigroups and divisor class groups, Canadian J. Math. 33 (1981), 1459–1468. · Zbl 0453.13005
[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II, Providence, Rhode Island, 1967. · Zbl 0178.01203
[3] K. Feng, Arithmetical characterizations of algebraic number fields with class group given, Acta Math. Sinica 1 (1985), 47–54. · Zbl 0583.12004
[4] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505–529. · Zbl 0618.12002
[5] A. Geroldinger, Factorization of natural numbers in algebraic number fields, Acta Arith. 57 (1991), 365–373. · Zbl 0729.11054
[6] A. Geroldinger, Arithmetical characterizations of divisor class groups, Arch. Math. 54 (1990), 455–464. · Zbl 0703.20059
[7] A. Geroldinger and F. Halter-Koch, Realization Theorems for Krull Semigroups, Semigroup Forum 44 (1992), 229–237. · Zbl 0751.20045
[8] A. Geroldinger and R. Schneider, On Davenport’s constant, J. Combinatorial Theory. · Zbl 0759.20008
[9] R. Gilmer, Commutative semigroup rings, The Univ. of Chicago Press, 1984. · Zbl 0566.20050
[10] F. Halter-Koch, On the factorization of algebraic integers into irreducibles, Coll. Math. Soc. János Bolyai 34 (1984), 699–707. · Zbl 0541.12004
[11] F. Halter-Koch, Halbgruppen mit Divisorentheorie, Expo. Math. 8 (1990), 27–66.
[12] F. Halter-Koch, Ein Approximationssatz für Halbgruppen mit Divisorentheorie, Result. Math. 19 (1991), 74–82. · Zbl 0742.20060
[13] F. Halter-Koch, Finiteness Theorems for Factorizations, Semigroup Forum 44 (1992), 112–117. · Zbl 0751.20046
[14] F. Halter-Koch and W. Müller, Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields, J. Reine Angew. Math 421 (1991), 159–188. · Zbl 0736.11064
[15] N. Jacobson, Basic Algebra I, W. H. Freeman & Co., 1985.
[16] J. Kaczorowski, Some remarks on factorization in algebraic number fields, Acta Arith. 43 (1983), 53–68. · Zbl 0526.12006
[17] W. Narkiewicz, Numbers with unique factorization in an algebraic number field, Acta Arith. 21 (1972), 313–322. · Zbl 0215.07301
[18] W. Narkiewicz, Finite abelian groups and factorization problems, Coll. Math. 42 (1979), 319–330. · Zbl 0514.12004
[19] W. Narkiewicz, Elementary and Analytic theory of algebraic numbers, Springer, 1990. · Zbl 0717.11045
[20] W. Narkiewicz and J. Śliwa, Finite abelian groups and factorization problems II, Coll. Math. 46 (1982), 115–122. · Zbl 1164.20358
[21] L. Skula, Divisorentheorie einer Halbgruppe, Math. Z. 114 (1970), 113–120. · Zbl 0177.03202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.