Staicu, Vasile On a non-convex hyperbolic differential inclusion. (English) Zbl 0769.34018 Proc. Edinb. Math. Soc., II. Ser. 35, No. 3, 375-382 (1992). The author shows the existence of a global solution for the Darboux problem \(u_{xy}\in F(x,y,u)\), \(u(x,0)=\alpha(x)\), \(u(0,y)=\beta(y)\), where \(\alpha\), \(\beta\) are two continuous functions from \([0,1]\) into \(\mathbb{R}^ n\) with \(\alpha(0)=\beta(0)\), \(F\) is a multifunction defined on \([0,1]\times [0,1] \times\mathbb{R}^ n\) with decomposable values, measurable with respect to \((x,y)\) and Lipschitzian with respect to \(u\). The key to proving this result is a selection theorem for multifunctions with decomposable values due to Fryszkowski and Bressan-Colombo. Reviewer: J.Myjak (L’Aquila) Cited in 8 Documents MSC: 34A60 Ordinary differential inclusions 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs Keywords:differential inclusions; decomposable mapping; global solution; Darboux problem; multifunction; selection theorem × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Colombo, Funkcial. Ekvac. 34 pp 321– (1991) [2] Cinquini-Cibrario, Equazioni a Derivate Parziali di Tipo Iperbolico Parziali (1964) [3] Bressan, Studia Math. 90 pp 69– (1988) [4] Aubin, Differential Inclusions (1984) · doi:10.1007/978-3-642-69512-4 [5] Teodoru, Proc. Itinerant Seminar on Functional Equations, Approximation and Convexity 6 pp 281– (1987) [6] Teodoru, An. Stiint. Univ. ”Al. I. Cuza” lasi Sect. I a Mat. 32 pp 41– (1986) [7] De Blasi, Bull. Inst. Math. Acad. Sinica. 14 pp 271– (1986) [8] Hiai, J. Multivariate Anal. 1 pp 149– (1971) [9] Marano, Rend. Acad. Naz. Sci. XL Mem. Mat. 107 pp 281– (1989) [10] Fryszkowski, Studia Math. 76 pp 163– (1983) [11] DOI: 10.1137/0305040 · Zbl 0238.34010 · doi:10.1137/0305040 [12] De Blasi, Proc. Edinburgh Math. Soc. 29 pp 7– (1986) [13] Teodoru, An. Stiint. Univ. ”Al. I. Cuza” lasi Sect. I a Mat. 31 pp 173– (1985) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.