zbMATH — the first resource for mathematics

Continuous selections of finite-set valued mappings. (English) Zbl 0769.54021
This paper deals with the existence of continuous selections for finite- valued continuous multifunctions. Main theorem: Let \(X\) be a locally connected treelike space and \(Y\) a Hausdorff topological space. Then each continuous finite-valued mapping \(F: X\to 2^ Y\) admits continuous selections in the strong sense (i.e. you can choose a point in the graph). A counterexample shows that hereditary unicoherence of \(X\) is necessary. It is shown that “treelike” and “hereditarily unicoherent” are equivalent for various subclasses of connected and locally connected spaces.
Reviewer: C.R.Borges (Davis)
54C65 Selections in general topology
Full Text: EuDML
[1] G. Anichini G. Conti, P. Zecca: Approximation and selection for nonconvex multi-functions in infinite dimensional spaces. Bolletino U.M.I., to appear. · Zbl 0717.47021
[2] J.-P. Aubin, A. Cellina: Differential Inclusions. Springer-Verlag, 1984. · Zbl 0538.34007
[3] S. Banach, S. Mazur: Über mehrdeutige stetige Abbildungen. Studia Math. 5 (1934), 174-178. · Zbl 0013.08202
[4] C. R. Borges: Continuous selections for one-to-finite continuous multi-functions. Questions Answers Gen. Topology 3 (1985/86), 103-109. · Zbl 0575.54017
[5] A. E. Brouwer: Treelike Spaces and Related Connected Topological Spaces. Math. Centre Tracts 75, Amsterdam 1977. · Zbl 0396.54013
[6] R. Engelking: General Topology. Monografie Matematyczne 60, Warszawa 1977. · Zbl 0373.54002
[7] A. F. Filippov: Conditions for the existence of solutions of many valued differential equations. Differential Equations 13 (1977), 740-746. · Zbl 0395.49030
[8] E. Klein, A. C. Thompson: Theory of Correspondences. A Wiley - Interscience publication, 1984. · Zbl 0556.28012
[9] E. Michael: Continuous selections I. Ann. Math. 63 (1956), 361 - 382. · Zbl 0071.15902
[10] E. Michael: Selected selection theorems. Amer. Math. Monthly 63 (1956), 233-238. · Zbl 0070.39502
[11] T. B. Muenzenberger R. E. Smithson, L. E. Ward: Characterizations of arboroids and dendritic spaces. Pacific J. Math. 102 (1982), 107-121. · Zbl 0496.54031
[12] L. E. Ward: A note on dendrites and trees. Proc. Amer. Math. Soc. 5 (1954), 992-994. · Zbl 0057.15006
[13] L. E. Ward: Mobs, trees, and fixed points. Proc. Amer. Math. Soc. 8 (1957), 798-804. · Zbl 0078.36303
[14] L. E. Ward: On dendritic sets. Duke Math. J. 25 (1958), 505-513. · Zbl 0092.39603
[15] G. T. Whyburn: Analytic Topology. Amer. Math. Soc. Colloq. Publ. 28, New York 1942. · Zbl 0061.39301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.