×

Galois group of \(x^{p^{n}}+aX+a\). (English) Zbl 1528.11118

In this paper, the authors study the Galois group of \(f(X)=X^{p^n}+aX+a\in\mathbb Z[X]\) – an Eisenstein trinomial with respect to \(p\), where \(p\) is an odd prime number and \(n\geq 3\).
In the main result of the present paper, Theorem 3.3, the authors prove that the Galois group \(G\) of \(f(X)\) over the field \(\mathbb Q\) of rational numbers is either the full symmetric group \(S_{p^n}\), or \(AGL(1, p^n) \leq G \leq AGL(n, p)\), where \(AGL(1, p^n)\) is the affine group of dimension 1 over \(\mathbb F_{p^n}\), and \(AGL(n, p)\) is the affine group of dimension \(n\) over \(\mathbb F_p\). They also show that \(G\) is isomorphic to \(S_{p^n}\), except possibly when \(|p^{np^n-1}+\frac{a}{p}(p^n-1)^{p^n-1}|\) is a square, and for each prime divisor \(\ell\) of \(\frac{a}{p}\), \(p\) divides the \(\ell\)-adic valuation \(v_\ell(a)\) of the integer \(a\). Section 2 is devoted to the detailed analysis of different inertia groups of all primes ramified in the splitting field of \(f(X)\) over \(\mathbb Q\).
This study is a natural generalization of studies of Galois groups of Eisenstein trinomials of the type \(X^p+aX+a\). In [J. Algebra 180, No. 3, 966–975 (1996; Zbl 0863.12003)], for example, A. Movahhedi showed that the Galois group \(G\) of this trinomial is either the group Aff(\(\mathbb F_p\)), or the full symmetric group \(S_p\), and the Galois group \(G\) is \(S_p\) when \(a<0\) or \(\frac{a}{p}\not\equiv 1\pmod p\).

MSC:

11R32 Galois theory
12F10 Separable extensions, Galois theory
11S15 Ramification and extension theory
12E10 Special polynomials in general fields

Citations:

Zbl 0863.12003

References:

[1] S. S. Abhyankar, “Galois theory on the line in nonzero characteristic”, Bull. Amer. Math. Soc. (N.S.) 27:1 (1992), 68-133. · Zbl 0760.12002 · doi:10.1090/S0273-0979-1992-00270-7
[2] B. Bensebaa, A. Movahhedi, and A. Salinier, “The Galois group of \[X^p+aX^s+a\]”, Acta Arith. 134:1 (2008), 55-65. · Zbl 1242.11087 · doi:10.4064/aa134-1-4
[3] B. Bensebaa, A. Movahhedi, and A. Salinier, “Wild ramification in trinomial extensions and Galois groups”, Glasg. Math. J. 63:1 (2021), 106-120. · Zbl 1460.11136 · doi:10.1017/S001708952000004X
[4] Q. Cai and H. Zhang, “A note on primitive permutation groups of prime power degree”, J. Discrete Math. (2015), art. id. 194741. · Zbl 1339.20001 · doi:10.1155/2015/194741
[5] S. D. Cohen, A. Movahhedi, and A. Salinier, “Double transitivity of Galois groups of trinomials”, Acta Arith. 82:1 (1997), 1-15. · Zbl 0893.11046 · doi:10.4064/aa-82-1-1-15
[6] S. D. Cohen, A. Movahhedi, and A. Salinier, “Galois groups of trinomials”, J. Algebra 222:2 (1999), 561-573. · Zbl 0939.12002 · doi:10.1006/jabr.1999.8033
[7] S. D. Cohen, A. Movahhedi, and A. Salinier, “Factorization over local fields and the irreducibility of generalized difference polynomials”, Mathematika 47:1-2 (2000), 173-196. · Zbl 1018.12001 · doi:10.1112/S0025579300015801
[8] J. D. Dixon and B. Mortimer, Permutation groups, Grad. Texts in Math. 163, Springer, 1996. · Zbl 0951.20001 · doi:10.1007/978-1-4612-0731-3
[9] K. Komatsu, “Discriminants of certain algebraic number fields”, J. Reine Angew. Math. 285 (1976), 114-125. · Zbl 0326.12006 · doi:10.1515/crll.1976.285.114
[10] K. Komatsu, “On the Galois group of \[X^p+aX+a=0\]”, Tokyo J. Math. 14:1 (1991), 227-229. · Zbl 0734.11062 · doi:10.3836/tjm/1270130502
[11] K. Komatsu, “On the Galois group of \[X^p+p^tb(X+1)=0\]”, Tokyo J. Math. 15:2 (1992), 351-356. · Zbl 0780.11049 · doi:10.3836/tjm/1270129460
[12] C. H. Li, “The finite primitive permutation groups containing an abelian regular subgroup”, Proc. London Math. Soc. (3) 87:3 (2003), 725-747. · Zbl 1040.20001 · doi:10.1112/S0024611503014266
[13] P. Llorente, E. Nart, and N. Vila, “Discriminants of number fields defined by trinomials”, Acta Arith. 43:4 (1984), 367-373. · Zbl 0493.12010 · doi:10.4064/aa-43-4-367-373
[14] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics 30, Academic Press, London-New York, 1969. · Zbl 0188.34503
[15] A. Movahhedi, “Galois group of \[X^p+aX+a\]”, J. Algebra 180:3 (1996), 966-975. · Zbl 0863.12003 · doi:10.1006/jabr.1996.0104
[16] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 3rd ed., Springer, 2004. · Zbl 1159.11039 · doi:10.1007/978-3-662-07001-7
[17] H. Osada, “The Galois groups of the polynomials \[x^n+ax^s+b\], II”, Tohoku Math. J. (2) 39:3 (1987), 437-445. · Zbl 0615.12012 · doi:10.2748/tmsj/1178228289
[18] K. Uchida, “Unramified extensions of quadratic number fields, II”, Tohoku Math. J. (2) 22 (1970), 220-224 · Zbl 0205.35404 · doi:10.2748/tmj/1178242816
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.