×

White noise testing for functional time series. (English) Zbl 07690330

Summary: We review white noise tests in the context of functional time series, and compare many of them using a custom developed R package wwntests. The tests are categorized based on whether they are conducted in the time domain or spectral domain, and whether they are valid for i.i.d. or general uncorrelated noise. We also review and extend several residual-based goodness-of-fit tests of popular models used in functional data analysis. Through numerous simulation experiments and a data application, we demonstrate the use of these tests, and are able to provide practical guidance on their implementation, benefits, and drawbacks.

MSC:

62-XX Statistics
62-02 Research exposition (monographs, survey articles) pertaining to statistics

References:

[1] Aue, A., Horváth, L. and Pellat, D. (2017). Functional generalized autoregressive conditional heteroskedasticity. Journal of Time Series Analysis, 38, 3-21. · Zbl 1356.62133
[2] Aue, A. and van Delft, A. (2020). Testing for stationarity of functional time series in the frequency domain. The Annals of Statistics, 48, 2505-2547. · Zbl 1455.62230
[3] Bagchi, P., Characiejus, V. and Dette, H. (2018). A simple test for white noise in functional time series. Journal of Time Series Analysis, 39, 54-74. · Zbl 1416.62475
[4] Bartlett, M. S. (1978). An introduction to stochastic processes: with special reference to methods and applications. Cambridge University Press, Cambridge. · Zbl 0365.60002
[5] Bosq, D. (2000). Linear Processes in Function Spaces. Springer. · Zbl 0962.60004
[6] Box, G. E. P. and Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive moving average time series models. Journal of the American Statistical Association, 65, 1509-1526. · Zbl 0224.62041
[7] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer, New York. · Zbl 0709.62080
[8] Bücher, A., Dette, H. and Heinrichs, F. (2023). A portmanteau-type test for detecting serial correlation in locally stationary functional time series. Statistical Inference for Stochastic Processes, 1-24.
[9] Cerovecki, C., Characiejus, V. and Hörmann, S. (2021). The maximum of the periodogram of Hilbert space valued time series. Journal of the American Statistical Association, 000, 000-000; under review.
[10] Cerovecki, C., Francq, C., Hörmann, S. and Zakoïan, J. (2019). Functional GARCH models: the quasi-likelihood approach and its applications. Journal of Econometrics, 209, 353-375. · Zbl 1452.62988
[11] Cerovecki, C. and Hörmann, S (2017). On the CLT for discrete Fourier transforms of functional time series. Journal of Multivariate Analysis, 154, 282-295. · Zbl 1397.62298
[12] Chang, J., Chen, C., Qiao, X. and Yao, Q. (2023). An autocovariance-based learning framework for high-dimensional functional time series. Journal of Econometrics.
[13] Characiejus, V. and Rice, G. (2020). A general white noise test based on kernel lag-window estimates of the spectral density operator. Econometrics and Statistics, 13, 175-196.
[14] Chen, W. W. and Deo, R. S. (2004). Power transformations to induce normality and their applications. Journal of the Royal Statistical Society (B)., 66, 117-130. · Zbl 1063.62065
[15] Chiou, J-M., Chen, Y-T. and Hsing, T. (2019). Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation. The Annals of Applied Statistics, 13, 1430-1463. · Zbl 1433.62329
[16] Chitturi, R. V. (1976). Distribution of multivariate white noise autocorrelation. Journal of the American Statistical Association, 71, 223-226. · Zbl 0338.62056
[17] Cuesta-Albertos, J. A., Garcí a-Portugués, E., Febrero-Bande, M. and González-Manteiga, W. (2019). Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. The Annals of Statistics, 47, number 1. · Zbl 1415.62027
[18] Durbin, J. and Brown, R. (1967). Tests of serial independence based on the cumulated periodogram. Bulletin of the International Statistical Institute, 42, 1039-1048.
[19] Durlauf, S. N. (1991). Spectral based testing of the martingale hypothesis. Journal of Econometrics, 50, 355-376. · Zbl 0757.62047
[20] Francq, C. and Zakoian, J-M. (2010). GARCH models. Wiley.
[21] Gabrys, R., Horváth, L. and Kokoszka, P. (2010). Tests for error correlation in the functional linear model. Journal of the American Statistical Association, 105, 1113-1125. · Zbl 1390.62118
[22] Gabrys, R. and Kokoszka, P. (2007). Portmanteau test of independence for functional observations. Journal of the American Statistical Association, 102, 1338-1348. · Zbl 1332.62322
[23] García-Portugués, E., Álvarez-Liébana, J., Álvarez-Pérez, G. and González-Manteiga, W. (2021). A goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal of Statistics, 48, 502-528. · Zbl 1469.62426
[24] González-Manteiga, W., Ruiz-Medina, M. D., López-Pérez, A. M. and Álvarez Liébana, J. (2023). Testing the goodness of fit of a hilbertian autoregressive model.
[25] Górecki, T., , Hörmann, S., Horváth, L. and Kokoszka, P. (2018). Testing normality of functional time series. Journal of Time Series Analysis, 39, 471-487. · Zbl 1416.62489
[26] Górecki, T., Horváth, L. and Kokoszka, P. (2020). Tests of normality of functional data. International Statistical Review, 88, 677-697. · Zbl 1528.62091
[27] Grenander, U. and Rosenblatt, M. (1953). Statistical spectral analysis of time series arising from stationary stochastic processes. The Annals of Mathematical Statistics, 24, 537-558. · Zbl 0053.41005
[28] Grenander, U. and Rosenblatt, M. (2008). Statistical Analysis of Stationary Time Series, volume 320. American Mathematical Society.
[29] Guo, S. and Qiao, X. (2023). On consistency and sparsity for high-dimensional functional time series with application to autoregressions. Bernoulli, 29, 451-472. · Zbl 07634399
[30] Hlávka, Z., Hušková, M. and Meintanis, S. (2021). Testing serial independence with functional data. Test, 30, 603-629. · Zbl 1474.62460
[31] Hong, Y. (1996). Consistent testing for serial correlation of unknown form. Econometrica: Journal of the Econometric Society, 64, 837-864. · Zbl 0960.62559
[32] Hörmann, S., , Kokoszka, P. and Nisol, G. (2018). Testing for periodicity of functional time series. The Annals of Statistics, 46, 2960-2984. · Zbl 1416.62496
[33] Hörmann, S., Horváth, L. and Reeder, R. (2013). A functional version of the ARCH model. Econometric Theory, 29, 267-288. · Zbl 1271.62204
[34] Hörmann, S., Kidziński, L. and Hallin, M. (2015). Dynamic functional principal components. Journal of the Royal Statistical Society(B)., 77, 319-348. · Zbl 1414.62133
[35] Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics, 38, 1845-1884. · Zbl 1189.62141
[36] Hörmann, S., Kuenzer, T. and Kokoszka, P. (2021). Testing normality of spatially indexed functional data. Canadian Journal of Statistics, 50, 304-326. · Zbl 1492.62196
[37] Horváth, L., Hušková, M. and Rice, G. (2013). Test of independence for functional data. Journal of Multivariate Analysis, 17, 100-119. · Zbl 1277.62124
[38] Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer. · Zbl 1279.62017
[39] Horváth, L., Kokoszka, P. and Rice, G. (2014). Testing stationarity of functional time series. Journal of Econometrics, 179, 66-82. · Zbl 1293.62186
[40] Horváth, L., Kokoszka, P., VanderDoes, J. and Wang, S. (2022). Inference in functional factor models with applications to yield curves. Journal of Time Series Analysis, 43, 872-894. · Zbl 07730971
[41] Horváth, L. and Rice, G. (2014). Extensions of some classical methods in change point analysis. Test, 23, 219-255. · Zbl 1305.62310
[42] Hosking, J. R. M. (1980). The multivariate portmanteau statistic. Journal of the American Statistical Association, 75, 602-608. · Zbl 0444.62104
[43] Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley. · Zbl 1338.62009
[44] Jarque, C. M. and Bera, A. K. (1980). Efficient tests for normality, homoskedasticity and serial independence of regression residuals. Economic Letters, 6, 255-259.
[45] Jarque, C. M. and Bera, A. K. (1987). A test of normality of observations and regression residual. International Statistical Review, 55, 163-172. · Zbl 0616.62092
[46] Kargin, V. and Onatski, A. (2008). Curve forecasting by functional autoregression. Journal of Multivariate Analysis, 99, 2508-2526. · Zbl 1151.62073
[47] Kim, M. and Petoukhov, D. (2022). wwntests: Hypothesis tests for functional time series. R package version 1.0.2.
[48] Kokoszka, P., Maslova, I., Sojka, J. and Zhu, L. (2008). Testing for lack of dependence in the functional linear model. Canadian Journal of Statistics, 36, 207-222. · Zbl 1144.62316
[49] Kokoszka, P. and Reimherr, M. (2017). Introduction to Functional Data Analysis. CRC Press. · Zbl 1411.62004
[50] Kokoszka, P., Rice, G. and Shang, H L (2017). Inference for the autocovariance of a functional time series under conditional heteroscedasticity. Journal of Multivariate Analysis, 162, 32-50. · Zbl 1378.62073
[51] Kuenzer, T., Hörmann, S. and Kokoszka, P. (2021). Principal component analysis of spatially indexed functions. Journal of the American Statistical Association, 116, 1444-1456. · Zbl 1510.62267
[52] Lee, C.E., Zhang, X. and Shao, X. (2020). Testing conditional mean independence for functional data. Biometrika, 107, 331-346. · Zbl 1441.62108
[53] Li, W. K. (2004). Diagnostic Checks in Time Series. Chapman and Hall. · Zbl 1053.62100
[54] Li, W. K. and McLeod, A. I. (1981). Distribution of the residual autocorrelations in multivariate ARMA time series models. Journal of the Royal Statistical Society, Series B, 43, 231-239. · Zbl 0505.62079
[55] Ljung, G. and Box, G. (1978). On a measure of lack of fit in time series models. Biometrika, 66, 67-72.
[56] Lobato, I. and Velasco, C. (2004). A simple test of normality for time series. Econometric Theory, 20, 671-689. · Zbl 1081.62066
[57] McElroy, T. and Roy, A. (2022). A review of seasonal adjustment diagnostics. International Statistical Review, 90, 259-284. · Zbl 07778344
[58] McLeod, A. I. (1978). On the distribution of residual autocorrelations in box-jenkins models. Journal of the Royal Statistical Society. Series B (Methodological)., 40, 296-302. · Zbl 0407.62065
[59] Mestre, G., Portela, J., Rice, G., Roque, A. Muñoz San and Alonso, E. (2021). Functional time series model identification and diagnosis by means of auto-and partial autocorrelation analysis. Computational Statistics & Data Analysis, 155, 107108. · Zbl 1510.62367
[60] Neumann, M. H. and Paparoditis, E. (2008). Goodness-of-fit tests for Markovian time series models: Central limit theory and bootstrap approximations. Bernoulli, 14, 14-46. · Zbl 1155.62058
[61] Panaretos, V. M. and Tavakoli, S. (2013). Cramér-Karhunen-Loève representation and harmonic principal component analysis of functional time series. Stochastic Processes and their Applications, 123, 2779-2807. · Zbl 1285.62109
[62] Panaretos, V. M. and Tavakoli, S. (2013). Fourier analysis of stationary time series in function space. The Annals of Statistics, 41, 568-603. · Zbl 1267.62094
[63] Patilea, V. and Sánchez-Sellero, C. (2020). Testing for lack-of-fit in functional regression models against general alternatives. Journal of Statistical Planning and Inference, 209, 229-251. · Zbl 1441.62933
[64] R Development Core Team. (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
[65] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. Springer. · Zbl 1079.62006
[66] Rice, G., Wirjanto, T. and Zhao, Y. (2020). Tests for conditional heteroscedasticity of functional data. Journal of Time Series Analysis, 41, 733-758. · Zbl 1458.62325
[67] Shao, X. (2011). Testing for white noise under unknown dependence and its applications to diagnostic checking for time series models. Econometric Theory, 27, 312-343. · Zbl 1210.62125
[68] Shumway, R. H. and Stoffer, D. S. (2017). Time Series Analysis and Its Applications with R Examples. Springer. · Zbl 1367.62004
[69] van Delft, A. (2020). A note on quadratic forms of stationary functional time series under mild conditions. Stochastic Processes and their Applications, 130, 4206-4251. · Zbl 1461.62242
[70] van Delft, A. and Eichler, M. (2018). Locally stationary functional time series. Electronic Journal of Statistics, 12, 107-170. · Zbl 1473.62317
[71] Xin, H. and Shang, H.L. (2023). Nonlinear autocorrelation function of functional time series. Nonlinear Dynamics, 111, 2537-2554.
[72] Yeh, C. K., Rice, G. and Dubin, J. A. (2023). Functional spherical autocorrelation: A robust estimate of the autocorrelation of a functional time series. Electronic Journal of Statistics, 17, 650-687. · Zbl 07662458
[73] Yuan, G., Shang, H.L. and Yanrong, Y. (2019). High-dimensional functional time series forecasting: An application to age-specific mortality rates. Journal of Multivariate Analysis, 170, 232-243. · Zbl 1415.62093
[74] Zamani, A., Hashemi, M. and Haghbin, H. (2019). Improved functional portmanteau tests. Journal of Statistical Computation and Simulation, 89, 1423-1436. · Zbl 07193790
[75] Zhang, X. (2016). White noise testing and model diagnostic checking for functional time series. Journal of Econometrics, 194, 76-95. · Zbl 1431.62429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.