A proof of the second Rogers-Ramanujan identity via Kleshchev multipartitions. (English) Zbl 1528.11111

J. Lepowsky and S. C. Milne [Adv. Math. 29, 15–59 (1978; Zbl 0384.10008)] observed a similarity between some Lie algebraic identities and the infinite products of the Rogers-Ramanujan identities \[ \sum_{n=0}^{\infty}\frac {q^{n^2}}{(1-q)(1-q^2)\cdots (1-q^n)}= \prod_{n=0}^{\infty}\frac{1}{(1-q^{5n+1})(1-q^{5n+4})} \;\;\;\;\; (|q|<1) \] and \[ \sum_{n=0}^{\infty}\frac {q^{n^2+n}}{(1-q)(1-q^2)\cdots (1-q^n)}= \prod_{n=0}^{\infty}\frac{1}{(1-q^{5n+2})(1-q^{5n+3})} \;\;\;\;\; (|q|<1). \] J. Lepowsky and R. L. Wilson [Invent. Math. 77, 199–290 (1984; Zbl 0577.17009)] gave a Lie theoretic interpretation of the infinite sums in the Rogers-Ramanujan identities. S. Corteel [Proc. Am. Math. Soc. 145, 2011–2022 (2017; Zbl 1357.05007)] gave a simple combinatorial proof of the second Rogers-Ramanujan identity by using cylindric plane partitions and the Robinson-Schensted-Knuth algorithm. Several relationships between Rogers-Ramanujan type identities and Kashiwara crystals are known, see [J. Dousse and J. Lovejoy, Proc. Am. Math. Soc. 146, 55–67 (2018; Zbl 1375.05018)].
In the paper under review the author proves the second Rogers-Ramanujan identity using certain \(k\)-tuples of unequal partitions, the Kleshchev multipartitions.


11P84 Partition identities; identities of Rogers-Ramanujan type
05A15 Exact enumeration problems, generating functions
17B37 Quantum groups (quantized enveloping algebras) and related deformations


Full Text: DOI arXiv


[1] S. Ariki, V. Kreiman and S. Tsuchioka, On the tensor product of two basic representations of \(U_v(\widehat{\mathfrak{sl}}_e)\), Adv. Math. 218 (2008), no. 1, 28-86. · Zbl 1205.17023
[2] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, MA, 1976. · Zbl 0371.10001
[3] G. E. Andrews, q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, in CBMS Regional Conference Series in Mathematics (Washington, DC, 1985), 117-130, Regional conference series in mathematics, 66, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, RI, 1986. · Zbl 0594.33001
[4] S. Corteel, Rogers-Ramanujan identities and the Robinson-Schensted-Knuth correspondence, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2011-2022. · Zbl 1357.05007
[5] J. Dousse and J. Lovejoy, On a Rogers-Ramanujan type identity from crystal base theory, Proc. Amer. Math. Soc. 146 (2018), no. 1, 55-67. · Zbl 1375.05018
[6] N. Jacon, Kleshchev multipartitions and extended Young diagrams, Adv. Math. 339 (2018), 367-403. · Zbl 1414.20004
[7] M. Kim and S. Kim, On the connection between Young walls and Littelmann paths, J. Algebra 323 (2010), no. 8, 2326-2336. · Zbl 1259.17013
[8] P. Littelmann, A plactic algebra for semisimple Lie algebras, Adv. Math. 124 (1996), no. 2, 312-331. · Zbl 0892.17009
[9] J. Lepowsky and S. C. Milne, Lie algebraic approaches to classical partition identities, Adv. in Math. 29 (1978), no. 1, 15-59. · Zbl 0384.10008
[10] J. Lepowsky and R. L. Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), no. 2, 199-290. · Zbl 0577.17009
[11] K. C. Misra and T. Miwa, Crystal base for the basic representation of \(U_q(\mathfrak{sl}(n))\), Comm. Math. Phys. 134 (1990), no. 1, 79-88. · Zbl 0724.17010
[12] A. Riese, qMultiSum—a package for proving \(q\)-hypergeometric multiple summation identities, J. Symbolic Comput. 35 (2003), no. 3, 349-376. · Zbl 1020.33007
[13] S. Tsuchioka, An example of A2 Rogers-Ramanujan bipartition identities of level 3, arXiv:2205.04811.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.