Paštéka, Milan Covering densities. (English) Zbl 0770.11009 Math. Slovaca 42, No. 5, 593-614 (1992). Let \(D_ 0\) be the algebra of sets generated by all infinite arithmetic progressions \(\{a+bd\mid d=1,2,\dots;\;a,b\in\mathbb{N}_ 0\}\). R. C. Buck’s measure density is defined by considering natural density as a finitely additive measure on \(D_ 0\) and extending it to a finitely additive outer probability measure \(\mu^*\), defined for all sets \(S\subseteq\mathbb{N}\), which determines a field \(D_ \mu\) of \(\mu^*\)- measurable sets.The author generalizes this theory by restricting the moduli \(d\) to a fixed (infinite) set \(A\subseteq\mathbb{N}\) of values, assumed to contain all divisors and all l.c.m’s of its elements (and pairs), studying the field \(D_ A\) and the outer measure \(\mu^*_ A\) so obtained. Typical results:(1) \(\forall S\in D_ A\) \(\forall\alpha\in[0,\mu^*_ A(S)]\) \(\exists S_ 1\subseteq S:S_ 1\in D_ A\), \(\mu^*_ A(S_ 1)=\alpha\) (Darboux property).(2) For any \(S\subseteq\mathbb{N}\), \(\mu^*(S)=1\) iff a suitable re- arrangement of \(S\) is uniformly distributed to all moduli \(d\in A\): (\(A\)- u.d.).(3) A set \(S\subseteq\mathbb{N}\) is \(\mu^*_ A\)-measurable if it intersects with each \(A\)-u.d. sequence in a set of natural density \(\mu^*_ A(S)\). Reviewer: B.Volkmann (Stuttgart) Cited in 1 Document MSC: 11B05 Density, gaps, topology 11B25 Arithmetic progressions 11B50 Sequences (mod \(m\)) Keywords:covering density; arithmetic progression; uniform distribution; Darboux property; measure density; outer measure PDF BibTeX XML Cite \textit{M. Paštéka}, Math. Slovaca 42, No. 5, 593--614 (1992; Zbl 0770.11009) Full Text: EuDML OpenURL References: [1] BHASKARA RAO K. P. S., BHASKARA RAO M.: Theory of Charges. A Study of Finitely Additive Measures. Academic Press, London, 1983. · Zbl 0516.28001 [2] BOREL E.: Sur les probabilités dénombrables et leur applications aritmétiques. Rend. Circ. Mat. Palermo 26 (1909), 247-271. · JFM 40.0283.01 [3] BUCK R. C.: The measure theoretic approach to density. Amer. J. Math. 68 (1946), 560-580. · Zbl 0061.07503 [4] CANTELLI F. P.: La tendenza ad un limite nel senzo del calcolo della probability. Rend. Circ. Mat. Palermo 16 (1916), 191-201. · JFM 46.0779.01 [5] ČECH E.: Point Sets. Academia, Praha, 1969. · Zbl 0191.53203 [6] DIJKSMA A., MEIJER H. G.: Note on uniformly distributed sequences of integers. Nieuw Arch. Wisk. 17 (1969), 210-213. · Zbl 0186.08701 [7] ERDÖS P., RÉNYI A.: On Cantor’s series with convergent \(\sum\frac1{q_n}\). Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959), 93-109. · Zbl 0095.26501 [8] ERDÖS P., RÉNYI A.: Some further statistical properties of the digits in Cantor’s series. Acta Math. Hungar. 10 (1959), 21-29. · Zbl 0088.25804 [9] ESTRADA T., CANVALL R.: Series that converge on sets of null density. Proc. Amer. Math. Soc. 97 (1986), 682-686. · Zbl 0592.40001 [10] HARDY G. H., WRIGHT E. M.: An Introduction to Theory of Numbers. Fourth edition, Clarendon Press, Oxford, 1960. · Zbl 0086.25803 [11] HINTZMANN W.: Measure and density of sequences. Amer. Math. Monthly 73 (1966), 133-135. [12] KINGMAN J. F. C., TAYLOR S. J.: Introduction to Measure & Probability. Cambridge University Press, Cambridge, 1977. · Zbl 0171.38603 [13] KUIPERS L., NIEDEREITER H.: Uniform Distribution of Sequences. J. Wiley, New York, 1974. [14] MAHARAM D.: Finitely additive measures on the integers. Sankhya 38 (1976), 44-59. · Zbl 0383.60008 [15] MEIJER H. G.: On uniform distribution of integers and uniform distribution. mod 1, Niew Arch. Wisk. 18 (1970), 271-278. · Zbl 0207.36101 [16] NAGOTA J.-L.: Modern General Topology. North-Holland Publ., Amsterdam- London, 1974. [17] NEUBRUNN T., RIEČAN B.: Measure and Integral. (Slovak), Veda, Bratislava, 1981. · Zbl 0485.28001 [18] NIVEN I.: Uniform distribution of sequences of integers. Trans. Amer. Math. Soc. 98 (1961), 52-61. · Zbl 0096.03102 [19] NOVOSELOV E. V.: Topologičeskaja teorija delimosti celych čisel. Uchen. Zap. Elabuž. Ped. Inst. 8 (1960), 3-23. [20] NOVOSELOV E. V.: Ob integrirovanii na odnom bikompaktnom koľce i ego priloženiach k teorii čisel. Izv. Vyssh. Uchebn. Zaved. Mat. 22 (1961), 66-79. [21] OLEJČEK V.: Darboux property of finitely additive measure on \sigma -ring. Math. Slovaca 27 (1977), 195-201. [22] PAŠTÉKA M.: Convergence of series and submeasures of the set of positive integers. Math. Slovaca 40 (1990), 273-278. · Zbl 0755.40003 [23] PAŠTÉKA M.: Some properties of Buck’s measure density. Math. Slovaca 42 (1992), 15-32. · Zbl 0761.11003 [24] RENYI A.: Wahrschemlichkeitrechnung. VEB Deutscher Verlag der Wissenschaften, Berlin, 1962. [25] UCHIYAMA S.: On the uniform distribution of sequences of integers. Proc. Jap. Acad. Ser. A Math. Sci. 32 (1961), 605-609. · Zbl 0131.29203 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.