zbMATH — the first resource for mathematics

Multipolar viscoelastic materials and the symmetry of the coefficients of viscosity. (English) Zbl 0770.73031
Summary: The integral constitutive equations of a multipolar viscoelastic material are analyzed from the thermodynamic point of view. They are shown to be approximated by those of the differential-type viscous materials when the processes are slow. As a consequence of the thermodynamic compatibility of the viscoelastic model, the coefficients of viscosity of the approximate viscous model are shown to have an Onsager-type symmetry. This symmetry was employed earlier in the proof of the existence of solutions for the corresponding equations.
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
74A20 Theory of constitutive functions in solid mechanics
74A15 Thermodynamics in solid mechanics
Full Text: EuDML
[1] H. Bellout F. Bloom C. Gupta: Existence and stability of velocity profiles for Couette flow of a bipolar fluid. to appear.
[2] J. L. Bleustein A. E. Green: Dipolar fluids. Int. J. Engng. Sci. 5 (1967), 323-340. · Zbl 0145.46305 · doi:10.1016/0020-7225(67)90041-9
[3] K. Bucháček: Thermodynamics of monopolar continuum of grade n. Apl. Mat. 16 (1971), 370-383. · Zbl 0237.73002
[4] B. D. Coleman W. Noll: An approximation theorem for functionals, with applications toin continuum mechanics. Arch. Rational Mech. Anal. 6 (1960), 355-370. · Zbl 0097.16403 · doi:10.1007/BF00276168
[5] A. E. Green R. S. Rivlin: Simple force and stress multipoles. Arch. Rational Mech. Anal. 16 (1964), 325-354. · Zbl 0244.73005
[6] A. E. Green R. S. Rivlin: Multipolar continuum mechanics. Arch. Rational Mech. Anal. 17 (1964), 113-147. · Zbl 0133.17604 · doi:10.1007/BF00253051
[7] S. R. de Groot P. Mazur: Non-Equilibrium Thermodynamics. North-Holland, Amsterodam, 1962. · Zbl 1375.82003
[8] M. E. Gurtin W. J. Hrusa: On the thermodynamics of viscoelastic materials of single-integral type. Quart. Appl. Math. 49 (1991), 67-85. · Zbl 0747.73006
[9] J. Nečas A. Novotný M. Šilhavý: Global solution to the ideal compressible heat conductive multipolar fluid. Comment. Math. Univ. Carolinae 30 (1989), 551-564. · Zbl 0702.35205
[10] J. Nečas A. Novotný, M, Šilhavý: Global solution to the compressible isothermal multipolar fluid. J. Math. Anal. Appl. 162 (1991), 223-241. · Zbl 0757.35060 · doi:10.1016/0022-247X(91)90189-7
[11] J. Nečas M. Růžička: Global solution to the incompressible viscous-multipolar material. to appear. · Zbl 0765.73006
[12] J. Nečas M. Šilhavý: Multipolar viscous fluids. Quart. Appl. Math. 49 (1991), 247-265. · Zbl 0732.76003
[13] A. Novotný: Viscous multipolar fluids-physical background and mathematical theory. Progress in Physics 39 (1991).
[14] M. Šilhavý: A note on Onsager’s relations. to appear Quart. Appl. Math. · Zbl 0809.73014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.