×

zbMATH — the first resource for mathematics

Review of preconditioning methods for fluid dynamics. (English) Zbl 0770.76048
Summary: We consider the use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations. Most of the analysis relies on the inviscid equations though some applications for viscous flow are considered. The preconditioning can consist of either a matrix or a differential operator acting on the time derivatives. Hence, in the steady state the original steady solution is obtained. For finite difference methods the preconditioning can change and improve the steady- state solutions. Several preconditioners previously discussed are reviewed and some new approaches are presented.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abarbanel, S.; Gottlieb, D., Optimal time splitting for two and three-dimensional navier – stokes equations with mixed derivative, J. comput. phys., 41, 1-33, (1981) · Zbl 0467.76062
[2] Abarbanel, S.; Dutt, P.; Gottlieb, D., Splitting methods for low Mach number Euler and navier – stokes equations, Comput. fluids, 17, 1-12, (1989) · Zbl 0664.76088
[3] Arnone, A.; Liou, M.-S.; Povinelli, L., Multigrid calculation of three dimensional viscous cascade flows, ICOMP report 91-18, (1991)
[4] Arnone, A.; Stecco, S.S., Multigrid calculation of incompressible flows for turbo-machinery applications, (), Madrid
[5] Au-Yeung, Y.H., A theorem on a mapping from a sphere to the circle and the simultaneous diagonalization of two Hermitean matrices, Proc. amer. math. soc., 20, 545-548, (1969) · Zbl 0186.05903
[6] Brandt, A., Guide to multigrid, (1984), Weizmann Institute Rehovot, Israel
[7] Brandt, A., Multilevel computations: review and recent development, (), 35-62
[8] Briley, W.R.; McDonald, H.; Shamroth, S.J., A low Mach number Euler formulation and application to time-iterative LBI schemes, Aiaa j., 21, 1467-1469, (1983)
[9] Cabuk, H.; Sung, C.-H.; Modi, V., Explicit runge – kutta method for three-dimensional internal incompressible flows, Aiaa j., 30, 2024-2031, (1992) · Zbl 0755.76069
[10] Chang, J.L.C.; Kwak, D., On the method of pseudo compressibility for numerically solving incompressible flows, AIAA paper 84-0252, (1984)
[11] Choi, D.; Merkle, C.L., Application of time-iterative schemes to incompressible flow, Aiaa j., 23, 1518-1524, (1985) · Zbl 0571.76016
[12] Choi, Y.-H.; Merkle, C.L., Time-derivative preconditioning for viscous flows, AIAA paper 91-1652, (1991)
[13] Y.-H. Choi and C.L. Merkle, The application of preconditioning to viscous flows, J. Comput. Phys. (to appear). · Zbl 0768.76032
[14] Chorin, A.J., A numerical method for solving incompressible viscous flow problems, J. comput. phys., 2, 12-26, (1967) · Zbl 0149.44802
[15] Dannenhoffer, J.F.; Giles, M.B., Accelerated convergence of Euler solutions using time inclining, Aiaa j., 28, 1457-1463, (1990)
[16] de Joutte, C.; Viviand, H.; Wornom, S.; Le Gouez, J.M., Pseudo-compressibility methods for incompressible flow computation, (), 270-274
[17] Feng, J.; Merkle, C.L., Evaluation of preconditioning methods for time marching system, AIAA paper 90-0016, (1990)
[18] Godfrey, A.G.; Walters, R.W.; van Leer, B., Preconditioning for the Navier Stokes equations with finite rate chemistry, AIAA paper 93-0535, (1993)
[19] Guerra, J.; Gustaffson, B., A numerical method for incompressible and compressible flow problems with smooth solutions, J. comput. phys., 63, 377-397, (1986) · Zbl 0608.76055
[20] Guerra, J.; Gustaffson, B., A semi-implicit method for hyperbolic problems with different time-scales, SIAM J. numer. anal., 23, 734-749, (1986) · Zbl 0613.65094
[21] Gustaffson, B., Unsymmetric hyperbolic systems and the Euler equations at low Mach numbers, J. sci. comput., 2, 123-136, (1987)
[22] Gustaffson, B.; Stoor, H., Navier-Stokes equations for almost incompressible flow, SIAM J. numer. anal., 28, 1523-1547, (1991) · Zbl 0734.76048
[23] Harlow, F.H.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow with free surfaces, Phys. fluids, 8, 2182-2185, (1965) · Zbl 1180.76043
[24] Hsu, C.-H.; Chen, Y.-M.; Liu, C.H., Preconditioned upwind methods to solve 3-D incompressible navier – stokes equations for viscous flows, Aiaa j., 30, 550-552, (1991) · Zbl 0825.76493
[25] Issa, R.I., Solution of the implicitly discretized fluid flow equations by operator splitting, J. comput. phys., 62, 40-65, (1986) · Zbl 0619.76024
[26] Jameson, A.; Baker, T.J., Multigrid solution of the Euler equations for aircraft configurations, AIAA paper 84-0093, (1984)
[27] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solutions of the Euler equations by a finite volume method using runge – kutta time-stepping schemes, AIAA paper 81-1259, (1981)
[28] Klainerman, S.; Majda, A., Compressible and incompressible fluids, Comm. pure appl. math., 35, 629-651, (1982) · Zbl 0478.76091
[29] Kobayashi, M.H.; Pereira, J.C.F., Predictions of compressible flows at all Mach number using pressure correction, collocated primitive variables and nonorthogonal meshes, AIAA paper 92-0426, (1992)
[30] Kreiss, H.O.; Lorenz, J., Initial-boundary value problems and the navier – stokes equations, (1989), Academic Press Boston, MA · Zbl 0689.35001
[31] Kreiss, H.O.; Lorenz, J.; Naughton, M., Convergence of the solutions of the compressible to the solutions of the incompressible navier – stokes equations, Adv. in app. math., 12, 187-214, (1991) · Zbl 0728.76084
[32] Lee, W.T., Local preconditioning of the Euler equations, ()
[33] Martinelli, L.; Jameson, A., Validation of a multigrid method for the Reynolds averaged equations, AIAA paper 88-0414, (1988)
[34] Merkle, C.L.; Athavale, M., A time accurate unsteady incompressible algorithm based on artificial compressibility, AIAA paper 87-1137, (1989)
[35] Merkle, C.L.; Choi, Y.H., Computation of low-speed compressible flows with time marching procedures, Internat. J. numer. methods engrg., 25, 831-838, (1988)
[36] Merkle, C.L.; Athavale, M., A time accurate unsteady incompressible algorithm based on artificial compressibility, AIAA paper 87-1137, (1989)
[37] Merkle, C.L.; Venkateswaran, S.; Buelow, O.E., The relationship between pressure-based and density-based algorithms, AIAA paper 92-0425, (1992)
[38] Pan, D.; Chakravarthy, S., Unified formulation for incompressible flows, AIAA paper 89-0122, (1989)
[39] Patanker, S.V., Numerical heat transfer and fluid flow, ()
[40] Paul, B.P.; Carlson, L.A., Analysis of junction flowfields using the incompressible navier – stokes equations, AIAA paper 92-0510, (1992)
[41] Peyret, R.; Taylor, T., Computational methods for fluid flow, (1983), Springer New York · Zbl 0514.76001
[42] Peyret, R.; Viviand, H., Pseudo-unsteady methods for inviscid or viscous flow computations, (), 41-71
[43] Ramshaw, J.D.; Mesina, G.L., A hybrid penalty-pseudocompressibility method for transient incompressible fluid flow, Comput. fluids, 20, 165-175, (1991) · Zbl 0731.76052
[44] Ramshaw, J.D.; Mousseau, V.A., Damped artificial compressibility method for steady-state low-speed flow calculations, Comput. fluids, 20, 177-189, (1991) · Zbl 0731.76053
[45] Rizzi, A.; Eriksson, L.E., Computation of inviscid incompressible flow with rotation, J. fluid mech., 153, 275-312, (1985) · Zbl 0585.76158
[46] Rogers, S.E.; Kwak, D.; Kaul, K., On the accuracy of the pseudo compressibility method in solving the incompressible navier – stokes equations, AIAA paper 85-1689, (1985)
[47] Rogers, S.E.; Kwak, D.; Kiris, C., Numerical solution of the incompressible navier – stokes equations for steady-state and time dependent problems, AIAA paper 89-0463, (1989)
[48] J.-S., Shuen, K.-H. Chen and Y.H. Choi, A coupled implicit method for chemical non-equilibrium flows at all speeds, J. Comput. Phys. (to appear). · Zbl 0771.76051
[49] Steger, J.L.; Kutler, P., Implicit finite-difference procedures for the computation of vortex wakes, Aiaa j., 15, 581-590, (1977) · Zbl 0381.76030
[50] Swanson, R.C.; Turkel, E., Pseudo-time algorithms for Navier-Stokes equations, Appl. numer. math., 2, 321-334, (1986) · Zbl 0612.76084
[51] Swanson, R.C.; Turkel, E., On central difference and upwind schemes, J. comput. phys., 101, 292-306, (1992) · Zbl 0757.76044
[52] Taylor, L.K., Unsteady three-dimensional incompressible algorithm based in artificial compressibility, ()
[53] Turkel, E., Fast solutions for compressible low Mach flows and incompressible flows, (), 571-575, Lecture Notes in Physics
[54] Turkel, E., Preconditioned methods for solving the incompressible and low speed compressible equations, J. comput. phys., 72, 277-298, (1987) · Zbl 0633.76069
[55] van Leer, B.; Lee, W.T.; Roe, P.L., Characteristic time-stepping or local preconditioning of the Euler equations, AIAA paper 91-1552, (1991)
[56] van Leer, B.; Lee, W.T.; Roe, P.L.; Powell, K.G., Design of optimally smoothing multistage schemes for the Euler equations, Comm. appl. numer. meth., 8, (1992) · Zbl 0758.76043
[57] Venkateswaran, S.; Weiss, J.M.; Merkle, C.L.; Choi, Y.-H., Propulsion-related flowfields using the preconditioned navier – stokes equations, AIAA paper 92-3437, (1992)
[58] S. Venkateswaran, J.M. Weiss, C.L. Merkle and Y.-H. Choi, Preconditioning an time-step definition in reacting Navier-Stokes computations, AIAA J. (submitted).
[59] Viviand, H., Pseudo-unsteady systems for steady inviscid flow calculations, (), 334-368
[60] Volpe, G., On the use and accuracy of compressible flow codes at low Mach numbers, AIAA paper 91-1662, (1991)
[61] Wigton, L.B.; Swanson, R.C., ON variable coefficient implicit residual smoothing, Proceedings 12th international conference numerical methods in fluid dynamics, (1990)
[62] Withington, J.P.; Shuen, J.S.; Yang, V., A time accurate implicit method for chemically reacting flows at all Mach numbers, AIAA paper 91-0581, (1991)
[63] Zauderer, E., Partial differential equations of applied mathematics, (1983), Wiley New York · Zbl 0551.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.