×

zbMATH — the first resource for mathematics

On stability in multiobjective programming. A stochastic approach. (English) Zbl 0770.90061
Summary: We assume that a deterministic multiobjective programming problem is approximated by surrogate problems based on estimations for the objective functions and the constraints. Making use of a large deviations approach, we investigate the behaviour of the constraint sets, the sets of efficient points and the solution sets if the size of the underlying sample tends to infinity. The results are illustrated by applying them to stochastic programming with chance constraints, where (i) the distribution function of the random variable is estimated by the empirical distribution function, (ii) certain parameters have to be estimated.

MSC:
90C29 Multi-objective and goal programming
90C31 Sensitivity, stability, parametric optimization
90C15 Stochastic programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer,Non-Linear Parametric Optimization (Akademie-Verlag, Berlin, 1982). · Zbl 0502.49002
[2] C. Castaing and M. Valadier, ”Convex analysis and measurable multifunctions,”Lecture Notes in Mathematics No. 580 (Springer, Berlin, 1977). · Zbl 0346.46038
[3] D.M. Čibisov, ”An asymptotic expansion for a class of estimators containing maximum likelihood estimators,”Theory of Probability and its Applications 1(2) (1973).
[4] J. Dupačová, ”Stability in stochastic programming with recourse. Estimated parameters,”Mathematical Programming 28 (1984) 72–83. · Zbl 0526.90069 · doi:10.1007/BF02612713
[5] J. Dupačová, ”Stochastic programming with incomplete information: A survey of results on postoptimization and sensitivity analysis,”Optimization 18 (1987) 507–532. · Zbl 0637.90070 · doi:10.1080/02331938708843266
[6] J. Dupačová, ”On nonnormal asymptotic behavior of optimal solutions of stochastic programming problems: The parametric case,” in: P. Mandl, M. Hušková, eds.,Proceedings of the 4th Prague Symposium on Asymptotic Statistics (Charles University, Prague, 1989) pp. 205–214.
[7] J. Dupačová and R.J.-B. Wets, ”Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems,”Annals of Statistics 16 (1988) 1517–1549. · Zbl 0667.62018 · doi:10.1214/aos/1176351052
[8] K.-H. Elster, R. Reinhardt, M. Schäuble and G. Donath,Einführung in die nichtlinear Optimierung (Teubner (BSB), Leipzig, 1977). · Zbl 0389.90063
[9] A.V. Fiacco,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming (Academic Press, New York, 1983). · Zbl 0543.90075
[10] C. Himmelberg, ”Measurable relations,”Fundamenta Mathematicae LXXXVII (1975) 53–72. · Zbl 0296.28003
[11] W. Hoeffding, ”Probability inequalities for sums of bounded random variables,”Journal of the American Statistical Association 58 (1963) 13–30. · Zbl 0127.10602 · doi:10.2307/2282952
[12] P. Kall,Stochastic Linear Programming (Springer, Berlin, 1976). · Zbl 0317.90042
[13] P. Kall, ”On approximations and stability in stochastic programming,” in: J. Guddat, H. Th. Jongen, B. Kummer, F. Nožička, eds.,Parametric Optimization and Related Topics (Akademie-Verlag, Berlin, 1987) pp. 387–407.
[14] V. Kañková, ”An approximate solution of a stochastic optimization problem,” in:Transactions of the 8th Prague Conference on Information Theory, Statistical Decision Functions, Random Processes Vol. A (Academia, Prague, 1978) pp. 349–353.
[15] A.J. King, ”Generalized delta theorems for multivalued mappings and measurable selections,”Mathematics of Operations Research 14 (1989) 720–736. · Zbl 0685.60008 · doi:10.1287/moor.14.4.720
[16] A.J. King and R.T. Rockafellar, ”Asymptotic theory for solutions in statistical estimation and stochastic programming,” to appear in:Mathematics of Operations Research. · Zbl 0798.90115
[17] A.J. King and R.J.-B. Wets, ”Epi-consistency of convex stochastic programs,”Stochastics and Stochastics Reports 34 (1991) 83–92. · Zbl 0733.90049
[18] R. Michel and J. Pfanzagl, ”The accuracy of the normal approximation for minimum constrast estimates,”Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 18 (1971) 73–84. · Zbl 0204.52002 · doi:10.1007/BF00538488
[19] P.H. Müller, ed.,Lexikon der Stochastik (Akademie-Verlag, Berlin, 1992, 5th ed.).
[20] P.H. Naccache, ”Stability in multicriteria optimization,”Journal of Mathematical Analysis and Applications 68 (1979) 441–453. · Zbl 0418.90079 · doi:10.1016/0022-247X(79)90128-8
[21] N.S. Papageorgiou, ”Pareto efficiency in locally convex spaces I, II,”Numerical Functional Analysis and Optimization 8 (1985) 83–136. · Zbl 0665.49003 · doi:10.1080/01630568508816205
[22] A. Prékopa, ”Logarithmic concave measures and related topics,” in: M.A.H. Dempster, ed.,Stochastic Programming (Academic Press, London, 1980) pp. 63–82.
[23] S.M. Robinson and R.J.-B. Wets, ”Stability in two-stage stochastic programming,”SIAM Journal on Control and Optimization 25 (1987) 1409–1416. · Zbl 0639.90074 · doi:10.1137/0325077
[24] R.T. Rockafellar, ”Integral functionals, normal integrands and measurable selections,” in: J.P. Gossez, E.J. Lami Dozo, J. Mawhin, L. Waelbroeck, eds.,Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathematics No. 543 (Springer, Berlin, 1976) pp. 157–207.
[25] W. Römisch and R. Schultz, ”Distribution sensitivity in stochastic programming,”Mathematical Programming 50 (1991) 197–226. · Zbl 0743.90083 · doi:10.1007/BF01594935
[26] W. Römisch and R. Schultz, ”Stability of solutions for stochastic programs with complete recourse,” to appear in:Mathematics of Operations Research. · Zbl 0797.90070
[27] W. Römisch and A. Wakolbinger, ”Obtaining convergence rates for approximations in stochastic programming,” in: J. Guddat, H.Th. Jongen, B. Kummer, F. Nožička, eds.,Parametric Optimization and Related Topics (Akademie-Verlag, Berlin, 1987) pp. 327–343. · Zbl 0635.90065
[28] G. Salinetti and R.J.-B. Wets, ”On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima,”Mathematics of Operations Research 11 (1986) 385–419. · Zbl 0611.60004 · doi:10.1287/moor.11.3.385
[29] Y. Sawaragi, H. Nakayama and T. Tanino,Theory of Multiobjective Optimization (Academic Press, New York, 1985). · Zbl 0566.90053
[30] A. Shapiro, ”Second order sensitivity analysis and asymptotic theory of parametrized nonlinear programs,”Mathematical Programming 33 (1985) 280–299. · Zbl 0579.90088 · doi:10.1007/BF01584378
[31] A. Shapiro, ”Asymptotic properties of statistical estimators in stochastic programming,”Annals of Statistics 17 (1989) 841–858. · Zbl 0688.62025 · doi:10.1214/aos/1176347146
[32] A. Shapiro, ”On differential stability in stochastic programming,”Mathematical Programming 47 (1990) 107–116. · Zbl 0705.90063 · doi:10.1007/BF01580855
[33] F. Solis and R.J.-B. Wets, ”A statistical view of stochastic programming,” Technical report, University of Kentucky (Lexington, 1981).
[34] S. Vogel, ”Stability results for stochastic programming problems,”Optimization 19 (1988) 269–288. · Zbl 0649.90078 · doi:10.1080/02331938808843343
[35] J. Wang, ”Distribution sensitivity analysis for stochastic programs with complete recourse,”Mathematical Programming 31 (1985) 286–297. · Zbl 0586.90071 · doi:10.1007/BF02591950
[36] J. Wang, ”Continuity of feasible solution sets of probabilistic constrained programs,”Journal of Optimization Theory and Applications 63 (1989) 79–89. · Zbl 0661.90066 · doi:10.1007/BF00940733
[37] R.J.-B. Wets, ”A statistical approach to the solution of stochastic programs with (convex) simple recourse,” Preprint, University of Kentucky (Lexington, 1980).
[38] R.J.-B. Wets, ”Stochastic programming,” in: G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds.,Handbooks in Operations Research and Management Science, Vol. 1 (North-Holland, Amsterdam, 1989) pp. 573–629.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.