Anatomy of a Gaussian giant: supercritical level-sets of the free field on regular graphs. (English) Zbl 1533.60170

Summary: We study the level-set of the zero-average Gaussian Free Field on a uniform random \(d\)-regular graph above an arbitrary level \(h\in (-\infty,h_{\star})\), where \(h_{\star}\) is the level-set percolation threshold of the GFF on the \(d\)-regular tree \(\mathbb{T}_d \). We prove that w.h.p as the number \(n\) of vertices of the graph diverges, the GFF has a unique giant connected component \(\mathcal{C}_1^{(n)}\) of size \(\eta (h)n+o(n)\), where \(\eta (h)\) is the probability that the root percolates in the corresponding GFF level-set on \(\mathbb{T}_d\). This gives a positive answer to the conjecture of [4] for most regular graphs. We also prove that the second largest component has size \(\Theta (\log n)\).
Moreover, we show that \({\mathcal{C}_1^{(n)}}\) shares the following similarities with the giant component of the supercritical Erdős-Rényi random graph. First, the diameter and the typical distance between vertices are \(\Theta (\log n)\). Second, the 2-core and the kernel encompass a given positive proportion of the vertices. Third, the local structure is a branching process conditioned to survive, namely the level-set percolation cluster of the root in \({\mathbb{T}_d} \) (in the Erdős-Rényi case, it is known to be a Galton-Watson tree with a Poisson distribution for the offspring).


60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G15 Gaussian processes
60C05 Combinatorial probability
05C80 Random graphs (graph-theoretic aspects)
Full Text: DOI arXiv Link


[1] Angelo Abächerli. Local picture and level-set percolation of the Gaussian free field on a large discrete torus. Stochastic Processes and their Applications, 129(9):3527-3546, 2019. · Zbl 1479.60187
[2] Angelo Abächerli and Alain-Sol Sznitman. Level-set percolation for the Gaussian free field on a transient tree. Ann. Inst. H. Poincaré Probab. Statist., 54(1):173-201, 02 2018. · Zbl 1396.60099
[3] Angelo Abächerli and Jiří Černý. Level-set percolation of the Gaussian free field on regular graphs I: regular trees. Electronic Journal of Probability, 25(none):1-24, 2020. · Zbl 1446.60079
[4] Angelo Abächerli and Jiří Černý. Level-set percolation of the Gaussian free field on regular graphs II: finite expanders. Electronic Journal of Probability, 25(none):1-39, 2020. · Zbl 1469.60297
[5] Louigi Addario-Berry, Nicolas Broutin, and Christina Goldschmidt. The continuum limit of critical random graphs. Probab. Theory Related Fields, 152(3-4):367-406, 2012. · Zbl 1239.05165
[6] David Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab., 25(2):812-854, 1997. · Zbl 0877.60010
[7] Noga Alon, Itai Benjamini, and Alan Stacey. Percolation on finite graphs and isoperimetric inequalities. Ann. Probab., 32(3):1727-1745, 07 2004. · Zbl 1046.05071
[8] Béla Bollobás. The isoperimetric number of random regular graphs. European Journal of Combinatorics, 9(3):241-244, 1988. · Zbl 0673.05086
[9] John Adrian Bondy and Uppaluri Siva Ramachandra Murphy, Graph Theory with Applications, 1976 London: Macmillan, 1976 · Zbl 1226.05083
[10] Jean Bricmont, Joel Lebowitz, and Christian Maes. Percolation in strongly correlated systems: The massless Gaussian field. Journal of Statistical Physics, 48:1249-1268, 01 1987. · Zbl 0962.82520
[11] Jiří Černý. Level-set percolation of the Gaussian free field on regular graphs III: giant component on expanders. arXiv e-prints, page 2105.13974, May 2021.
[12] Jiří Černý, Augusto Teixeira, and David Windisch. Giant vacant component left by a random walk in a random d-regular graph. Ann. Inst. H. Poincaré Probab. Statist., 47(4):929-968, 11 2011. · Zbl 1267.05237
[13] Nicolas Curien. Random graphs – the local convergence point of view. https://www.imo.universite-paris-saclay.fr/curien/cours/cours-RG.pdf, 2018.
[14] Jian Ding, Eyal Lubetzky, and Yuval Peres. Anatomy of the giant component: the strictly supercritical regime. European J. Combin., 35:155-168, 2014. · Zbl 1296.05174
[15] Alexander Drewitz, Alexis Prévost, and Pierre-Françcois Rodriguez. The Sign Clusters of the Massless Gaussian Free Field Percolate on {Z \[{^d}\], d ≥slant 3} (and more). Communications in Mathematical Physics, page 1398, August 2018. · Zbl 1394.60099
[16] Alexander Drewitz, Alexis Prévost, and Pierre-Françcois Rodriguez. Critical exponents for a percolation model on transient graphs. arXiv e-prints, page 2101.05801v2, March 2021. · Zbl 1522.60076
[17] Hugo Duminil-Copin, Subhajit Goswami, Aran Raoufi, Franco Severo, and Ariel Yadin. Existence of phase transition for percolation using the Gaussian free field. Duke Mathematical Journal, 169(18):3539-3563, Dec 2020. · Zbl 1470.60275
[18] Hugo Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, and Franco Severo. Equality of critical parameters for percolation of Gaussian free field level-sets. https://arxiv.org/abs/2002.07735, 2020. · Zbl 07684355
[19] Nathalie Eisenbaum, Haya Kaspi, Michael Marcus, Jay Rosen, and Zhan Shi.A ray-knight theorem for symmetric markov processes. Ann. Probab., 28(4):1781-1796, 10 2000. · Zbl 1044.60064
[20] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 5:17-61, 1960. · Zbl 0103.16301
[21] Edgar Gilbert. Random graphs. Ann. Math. Statist., 30:1141-1144, 1959. · Zbl 0168.40801
[22] Shlomo Hoory, Nathan Linial and Avi Wigderson. Expander graphs and their applications Bulletin of the American Mathematical Society, 43(4): 439-561, 2006. · Zbl 1147.68608
[23] Michael Krivelevich, Eyal Lubetzky, and Benny Sudakov. Asymptotics in percolation on high-girth expanders, 2020. · Zbl 1455.05041
[24] Titus Lupu. From loop clusters and random interlacements to the free field. Ann. Probab., 44(3):2117-2146, 05 2016. · Zbl 1348.60141
[25] Stanislav Molchanov and Alexey Stepanov. Percolation in random fields. i. Theoretical and Mathematical Physics, 55(2):478-484, 1983.
[26] Serguei Popov and Balazs Rath. On decoupling inequalities and percolation of excursion sets of the Gaussian free field. Journal of Statistical Physics, 159, 07 2013. · Zbl 1328.82026
[27] Pierre-François Rodriguez and Alain-Sol Sznitman. Phase transition and level-set percolation for the Gaussian free field. Communications in Mathematical Physics, 320(2):571-601, 2013. · Zbl 1269.82028
[28] Christophe Sabot and Pierre Tarrès. Inverting ray-knight identity. Probability Theory and Related Fields, 165(3):559-580, Aug 2016. · Zbl 1345.60097
[29] Laurent Saloff-Coste. Lectures on finite Markov chains, pages 301-413. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997. · Zbl 0885.60061
[30] Alain-Sol Sznitman. Random interlacements and the Gaussian free field. The Annals of Probability, 40, 02 2011.
[31] Alain-Sol Sznitman. An isomorphism theorem for random interlacements. Electron. Commun. Probab., 17:9 pp., 2012. · Zbl 1247.60135
[32] Alain-Sol Sznitman. Coupling and an application to level-set percolation of the Gaussian free field. Electron. J. Probab., 21:26 pp., 2016. · Zbl 1336.60194
[33] Remco van der Hofstad. Random graphs and complex networks: volume I. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2016.
[34] Wolfgang Woess. Random Walks on Infinite Graphs and Groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, United Kingdom, paperback re-edition (with corrections) edition, 2008. 352 S · Zbl 0951.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.