Robertson, David S.; Lee, Kim May; López-Kolkovska, Boryana C.; Villar, Sofía S. Response-adaptive randomization in clinical trials: from myths to practical considerations. (English) Zbl 07708422 Stat. Sci. 38, No. 2, 185-208 (2023). Summary: Response-Adaptive Randomization (RAR) is part of a wider class of data-dependent sampling algorithms, for which clinical trials are typically used as a motivating application. In that context, patient allocation to treatments is determined by randomization probabilities that change based on the accrued response data in order to achieve experimental goals. RAR has received abundant theoretical attention from the biostatistical literature since the 1930s and has been the subject of numerous debates. In the last decade, it has received renewed consideration from the applied and methodological communities, driven by well-known practical examples and its widespread use in machine learning. Papers on the subject present different views on its usefulness, and these are not easy to reconcile. This work aims to address this gap by providing a broad, balanced and fresh review of methodological and practical issues to consider when debating the use of RAR in clinical trials. Cited in 1 ReviewCited in 6 Documents MSC: 62-XX Statistics Keywords:ethics; patient allocation; sample size imbalance; time trends; type I error control × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] ANGUS, D. C., BERRY, S., LEWIS, R. J., AL-BEIDH, F., ARABI, Y., VAN BENTUM-PUIJK, W., BHIMANI, Z., BONTEN, M., BROGLIO, K. et al. (2020). The REMAP-CAP (randomized embedded multifactorial adaptive platform for community-acquired pneumonia) study. Rationale and design. Ann. Amer. Thorac. Soc. 17 879-891. · doi:10.1513/AnnalsATS.202003-192SD [2] ANSCOMBE, F. J. (1963). Sequential medical trials. J. Amer. Statist. Assoc. 58 365-383. [3] ARMITAGE, P. (1985). The search for optimality in clinical trials. Int. Stat. Rev. 53 15-24. · Zbl 0586.62129 · doi:10.2307/1402871 [4] ATKINSON, A. C. and BISWAS, A. (2014). Randomized Response-Adaptive Designs in Clinical Trials. CRC Press, Boca Raton, FL. [5] ATKINSON, A. C., BISWAS, A. and PRONZATO, L. (2011). Covariate-balanced response-adaptive designs for clinical trials with continuous responses that target allocation probabilities. Technical Report NI11042-DAE, Isaac Newton Institute for Mathematical Sciences, Cambridge. [6] BAI, Z. D., HU, F. and ROSENBERGER, W. F. (2002). Asymptotic properties of adaptive designs for clinical trials with delayed response. Ann. Statist. 30 122-139. · doi:10.1214/aos/1015362187 [7] BALDI ANTOGNINI, A. and GIOVAGNOLI, A. (2010). Compound optimal allocation for individual and collective ethics in binary clinical trials. Biometrika 97 935-946. · Zbl 1204.62179 · doi:10.1093/biomet/asq055 [8] BALDI ANTOGNINI, A. and GIOVAGNOLI, A. (2015). Adaptive Designs for Sequential Treatment Allocation. Chapman & Hall/CRC Biostatistics Series. CRC Press, Boca Raton, FL. · Zbl 1311.62001 [9] BALDI ANTOGNINI, A., NOVELLI, M. and ZAGORAIOU, M. (2022a). A simple solution to the inadequacy of asymptotic likelihood-based inference for response-adaptive clinical trials: Likelihood-based inference for RAR trials. Statist. Papers 63 157-180. · Zbl 07504788 · doi:10.1007/s00362-021-01234-3 [10] BALDI ANTOGNINI, A., NOVELLI, M. and ZAGORAIOU, M. (2022b). A new inferential approach for response-adaptive clinical trials: The variance-stabilized bootstrap. The variance-stabilized bootstrap for RA designs. TEST 31 235-254. · Zbl 1484.62128 · doi:10.1007/s11749-021-00777-9 [11] BALDI ANTOGNINI, A., VAGHEGGINI, A. and ZAGORAIOU, M. (2018). Is the classical Wald test always suitable under response-adaptive randomization? Stat. Methods Med. Res. 27 2294-2311. · doi:10.1177/0962280216680241 [12] BALDI ANTOGNINI, A. and ZAGORAIOU, M. (2011). The covariate-adaptive biased coin design for balancing clinical trials in the presence of prognostic factors. Biometrika 98 519-535. · Zbl 1231.62148 · doi:10.1093/biomet/asr021 [13] BALDI ANTOGNINI, A. and ZAGORAIOU, M. (2012). Multi-objective optimal designs in comparative clinical trials with covariates: The reinforced doubly adaptive biased coin design. Ann. Statist. 40 1315-1345. · Zbl 1257.62082 · doi:10.1214/12-AOS1007 [14] BALDI ANTOGNINI, A., VAGHEGGINI, A., ZAGORAIOU, M. and NOVELLI, M. (2018). A new design strategy for hypothesis testing under response adaptive randomization. Electron. J. Stat. 12 2454-2481. · Zbl 1395.62243 · doi:10.1214/18-EJS1458 [15] BARKER, A. D., SIGMAN, C. C., KELLOFF, G. J., HYLTON, N. M., BERRY, D. A. and ESSERMAN, L. J. (2009). I-SPY 2: An adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin. Pharmacol. Ther. 86 97-100. [16] BARNETT, H. Y., VILLAR, S. S., GEYS, H. and JAKI, T. (2021). A novel statistical test for treatment differences in clinical trials using a response-adaptive forward-looking Gittins index rule. Biometrics 79 86-97. · Zbl 1522.62102 · doi:10.1111/biom.13581 [17] BAROHN, R. J., GAJEWSKI, B., PASNOOR, M., BROWN, A., HERBELIN, L. L., KIMMINAU, K. S., MUDARANTHAKAM, D. P., JAWDAT, O., DIMACHKIE, M. M. and PATIENT ASSISTED INTERVENTION FOR NEUROPATHY: COMPARISON OF TREATMENT IN REAL LIFE SITUATIONS (PAIN-CONTROLS) STUDY TEAM (2021). Patient Assisted Intervention for Neuropathy: Comparison of Treatment in Real Life Situations (PAIN-CONTRoLS): Bayesian adaptive comparative effectiveness randomized trial. JAMA Neurology 78 68-76. [18] BARTLETT, R., ROLOFF, D., CORNELL, R., ANDREWS, A., DILLON, P. and ZWISCHENBERGER, J. (1985). Extracorporeal circulation in neonatal respiratory failure: A prospective randomized study. Pediatrics 76 479-487. [19] BEAUCHAMP, T. L. Informed consent. In Medical Ethics, 2nd ed. (R. M. Veatch, ed.) 185-508. Jones and Bartlett, Boston, MA. [20] BELLO, G. A. and SABO, R. T. (2016). Outcome-adaptive allocation with natural lead-in for three-group trials with binary outcomes. J. Stat. Comput. Simul. 86 2441-2449. · Zbl 1510.62337 · doi:10.1080/00949655.2015.1114116 [21] BERRY, D. A. (2004). Bayesian statistics and the efficiency and ethics of clinical trials. Statist. Sci. 19 175-187. · Zbl 1057.62096 · doi:10.1214/088342304000000044 [22] BERRY, D. A. and EICK, S. G. (1995). Adaptive assignment versus balanced randomization in clinical trials: A decision analysis. Stat. Med. 14 231-246. [23] BERRY, S. M., PETZOLD, E. A., DULL, P., THIELMAN, N. M., CUNNINGHAM, C. K., COREY, G. R., MCCLAIN, M. T., HOOVER, D. L., RUSSELL, J. et al. (2016). A response adaptive randomization platform trial for efficient evaluation of Ebola virus treatments: A model for pandemic response. Clin. Trials 13 22-30. [24] BLACKWELL, M., HONAKER, J. and KING, G. (2017). A unified approach to measurement error and missing data: Overview and applications. Sociol. Methods Res. 46 303-341. · doi:10.1177/0049124115585360 [25] Bowden, J. and Trippa, L. (2017). Unbiased estimation for response adaptive clinical trials. Stat. Methods Med. Res. 26 2376-2388. · doi:10.1177/0962280215597716 [26] BRITTAIN, E. H. and PROSCHAN, M. A. (2016). Comments on Berry et al.’s response-adaptive randomization platform trial for Ebola. Clin. Trials 13 566-567. [27] BURTON, P. R., GURRINA, L. C. and HUSSEY, M. H. (1997). Interpreting the clinical trials of extracorporeal membrane oxygenation in the treatment of persistent pulmonary hypertension of the newborn. Semin. Neonatol. 2 69-79. [28] CHEN, X., LEE, K. M., VILLAR, S. S. and ROBERTSON, D. S. (2022). Some performance considerations when using multi-armed bandit algorithms in the presence of missing data. PLoS ONE. 17 e0274272. [29] CHENG, Y., SU, F. and BERRY, D. A. (2003). Choosing sample size for a clinical trial using decision analysis. Biometrika 90 923-936. · Zbl 1436.62523 · doi:10.1093/biomet/90.4.923 [30] CHEVRET, S. (2012). Bayesian adaptive clinical trials: A dream for statisticians only? Stat. Med. 31 1002-1013. · doi:10.1002/sim.4363 [31] CHOW, S.-C. and CHANG, M. (2007). Adaptive Design Methods in Clinical Trials. CRC Press, Boca Raton, FL. · Zbl 1235.62132 [32] COAD, D. S. (1991). Sequential tests for an unstable response variable. Biometrika 78 113-121. · Zbl 0744.62110 · doi:10.1093/biomet/78.1.113 [33] COAD, D. S. and GOVINDARAJULU, Z. (2000). Corrected confidence intervals following a sequential adaptive clinical trial with binary responses. J. Statist. Plann. Inference 91 53-64. · Zbl 0958.62074 · doi:10.1016/S0378-3758(00)00129-4 [34] Coad, D. S. and Ivanova, A. (2001). Bias calculations for adaptive urn designs. Sequential Anal. 20 91-116. · Zbl 0985.62061 · doi:10.1081/SQA-100106051 [35] COLTON, T. (1963). A model for selecting one of two medical treatments. J. Amer. Statist. Assoc. 58 388-400. [36] DAS, S. and LO, A. W. (2017). Re-inventing drug development: A case study of the I-SPY 2 breast cancer clinical trials program. Contemp. Clin. Trials 62 168-174. · doi:10.1016/j.cct.2017.09.002 [37] DAWSON, A. (2009). The normative status of the requirement to gain an informed consent in clinical trials: Comprehension, obligations and empirical evidence. In The Limits of Consent: A Sociolegal Approach to Human Subject Research in Medicine (O. Corrigan, J. McMillan, K. Liddell, M. Richards and C. Weijer, eds.) 99-113. Oxford Univ. Press, Oxford. [38] DELIU, N., WILLIAMS, J. J. and VILLAR, S. S. (2021). Efficient inference without trading-off regret in bandits: An allocation probability test for Thompson sampling. arXiv preprint, arXiv:2111.00137. [39] EISELE, J. R. (1994). The doubly adaptive biased coin design for sequential clinical trials. J. Statist. Plann. Inference 38 249-261. · Zbl 0795.62066 · doi:10.1016/0378-3758(94)90038-8 [40] FASERU, B., ELLERBECK, E. F., CATLEY, D., GAJEWSKI, B. J., SCHEUERMANN, T. S., SHIREMAN, T. I., MUSSULMAN, L. M., NAZIR, N., BUSH, T. et al. (2017). Changing the default for tobacco-cessation treatment in an inpatient setting: Study protocol of a randomized controlled trial. Trials 18 379. [41] FLOURNOY, N., HAINES, L. M. and ROSENBERGER, W. F. (2013). A graphical comparison of response-adaptive randomization procedures. Stat. Biopharm. Res. 5 126-141. [42] FREEDMAN, B. (1987). Equipoise and the ethics of clinical research. N. Engl. J. Med. 317 141-145. [43] GALBETE, A., MOLER, J. A. and PLO, F. (2016). Randomization tests in recursive response-adaptive randomization procedures. Statistics 50 418-434. · Zbl 1342.62136 · doi:10.1080/02331888.2015.1050020 [44] GALBETE, A. and ROSENBERGER, W. F. (2016). On the use of randomization tests following adaptive designs. J. Biopharm. Statist. 26 466-474. [45] GLIMM, E. and ROBERTSON, D. S. (2022). Familywise error rate control for block response-adaptive randomization. Stat. Methods Med. Res. · doi:10.1177/09622802231167437 [46] GRIEVE, A. P. (2017). Response-adaptive clinical trials: Case studies in the medical literature. Pharm. Stat. 16 64-86. · doi:10.1002/pst.1778 [47] GU, X. and LEE, J. J. (2010). A simulation study for comparing testing statistics in response-adaptive randomization. BMC Med. Res. Methodol. 10 48. [48] GUOLO, A. (2008). Robust techniques for measurement error correction: A review. Stat. Methods Med. Res. 17 555-580. · doi:10.1177/0962280207081318 [49] HADAD, V., HIRSHBERG, D. A., ZHAN, R., WAGER, S. and ATHEY, S. (2021). Confidence intervals for policy evaluation in adaptive experiments. Proc. Natl. Acad. Sci. USA 118 Paper No. e2014602118, 10. · doi:10.1073/pnas.2014602118 [50] Hu, F. and Rosenberger, W. F. (2003). Optimality, variability, power: Evaluating response-adapative randomization procedures for treatment comparisons. J. Amer. Statist. Assoc. 98 671-678. · Zbl 1040.62102 · doi:10.1198/016214503000000576 [51] Hu, F. and Rosenberger, W. F. (2006). The Theory of Response-Adaptive Randomization in Clinical Trials. Wiley Series in Probability and Statistics. Wiley Interscience, Hoboken, NJ. · Zbl 1111.62107 · doi:10.1002/047005588X [52] HU, F. and ZHANG, L.-X. (2004a). Asymptotic properties of doubly adaptive biased coin designs for multitreatment clinical trials. Ann. Statist. 32 268-301. · Zbl 1105.62381 · doi:10.1214/aos/1079120137 [53] HU, F. and ZHANG, L.-X. (2004b). Asymptotic normality of urn models for clinical trials with delayed response. Bernoulli 10 447-463. · Zbl 1054.62083 · doi:10.3150/bj/1089206406 [54] HU, F., ZHANG, L.-X. and HE, X. (2009). Efficient randomized-adaptive designs. Ann. Statist. 37 2543-2560. · Zbl 1171.62043 · doi:10.1214/08-AOS655 [55] HU, J., ZHU, H. and HU, F. (2015). A unified family of covariate-adjusted response-adaptive designs based on efficiency and ethics. J. Amer. Statist. Assoc. 110 357-367. · Zbl 1373.62382 · doi:10.1080/01621459.2014.903846 [56] HU, F., ZHANG, L.-X., CHEUNG, S. H. and CHAN, W. S. (2008). Doubly adaptive biased coin designs with delayed responses. Canad. J. Statist. 36 541-559. · Zbl 1166.62059 · doi:10.1002/cjs.5550360404 [57] IVANOVA, A. (2003). A play-the-winner-type urn design with reduced variability. Metrika 58 1-13. · Zbl 1019.62076 · doi:10.1007/s001840200220 [58] JACKO, P. (2019). The finite-horizon two-armed bandit problem with binary responses: A multidisciplinary survey of the history, state of the art, and myths. arXiv preprint, arXiv:1906.10173. [59] Jennison, C. and Turnbull, B. W. (2000). Group Sequential Methods with Applications to Clinical Trials. CRC Press/CRC, Boca Raton, FL. · Zbl 0934.62078 [60] JENNISON, C. and TURNBULL, B. W. (2001). Group sequential tests with outcome-dependent treatment assignment. Sequential Anal. 20 209-234. · Zbl 0987.62052 · doi:10.1081/SQA-100107646 [61] JEON, Y. and HU, F. (2010). Optimal adaptive designs for binary response trials with three treatments. Stat. Biopharm. Res. 2 310-318. [62] JIANG, Y., ZHAO, W. and DURKALSKI-MAULDIN, V. (2020). Time-trend impact on treatment estimation in two-arm clinical trials with a binary outcome and Bayesian response adaptive randomization. J. Biopharm. Statist. 30 69-88. [63] JOHNSON, R., JACKSON, C., PRESANIS, A., VILLAR, S. S. and ANGELIS, D. D. (2022). Quantifying efficiency gains of innovative designs of two-arm vaccine trials for Covid-19 using an epidemic simulation model. Stat. Biopharm. Res. 14 33-41. · doi:10.1080/19466315.2021.1939774 [64] KAIBEL, C. and BIEMANN, T. (2021). Rethinking the gold standard with multi-armed bandits: Machine learning allocation algorithms for experiments. Organ. Res. Methods 24 78-103. [65] KARRISON, T. G., HUO, D. and CHAPPELL, R. (2003). A group sequential, response-adaptive design for randomized clinical trials. Control. Clin. Trials 24 506-522. [66] KAUFMANN, E. and GARIVIER, A. (2017). Learning the distribution with largest mean: Two bandit frameworks. In Journées MAS 2016 de la SMAI—Phénomènes Complexes et Hétérogènes. ESAIM Proc. Surveys 60 114-131. EDP Sci., Les Ulis. · Zbl 1426.68237 · doi:10.1051/proc/201760114 [67] KAUFMANN, E., KORDA, N. and MUNOS, R. (2012). Thompson sampling: An asymptotically optimal finite-time analysis. In Algorithmic Learning Theory. Lecture Notes in Computer Science 7568 199-213. Springer, Heidelberg. · Zbl 1386.91055 · doi:10.1007/978-3-642-34106-9_18 [68] KIM, E. S., HERBST, R. S., WISTUBA, I. I., LEE, J. J., BLUMENSCHEIN, G. R., TSAO, A., STEWART, D. J., HICKS, M. E., ERASMUS, J. JR et al. (2011). The BATTLE trial: Personalizing therapy for lung cancer. Cancer Discov. 1 44-53. [69] KORN, E. L. and FREIDLIN, B. (2011a). Outcome-adaptive randomization: Is it useful? J. Clin. Oncol. 29 771-776. [70] KORN, E. L. and FREIDLIN, B. (2011b). Reply to Y. Yuan et al. J. Clin. Oncol. 29 e393. [71] KORN, E. L. and FREIDLIN, B. (2017). Adaptive clinical trials: Advantages and disadvantages of various adaptive design elements. J. Natl. Cancer Inst. 109 djx013. [72] KORN, E. L. and FREIDLIN, B. (2022). Time trends with response-adaptive randomization: The inevitability of inefficiency. Clin. Trials 19 158-161. [73] LAAGE, T., LOEWY, J. W., MENON, S., MILLER, E. R., PULKSTENIS, E., KAN-DOBROSKY, N. and COFFEY, C. (2017). Ethical considerations in adaptive design clinical trials. Ther. Innov. Regul. Sci. 51 190-199. [74] LATTIMORE, T. and SZEPESVÁRI, C. (2020). Bandit Algorithms. Cambridge Univ. Press, Cambridge, UK. · Zbl 1439.68002 [75] LEE, J. J., CHEN, N. and YIN, G. (2012). Worth adapting? Revisiting the usefulness of outcome-adaptive randomization. Clin. Cancer Res. 18 4498-4507. [76] LEE, K. M. and LEE, J. J. (2021). Evaluating Bayesian adaptive randomization procedures with adaptive clip methods for multi-arm trials. Stat. Methods Med. Res. 30 1273-1287. · doi:10.1177/0962280221995961 [77] LEE, K. M., MITRA, R. and BIEDERMANN, S. (2018). Optimal design when outcome values are not missing at random. Statist. Sinica 28 1821-1838. · Zbl 1406.62085 [78] LI, X. and WANG, X. (2012). Variance-penalized response-adaptive randomization with mismeasurement. J. Statist. Plann. Inference 142 2128-2135. · Zbl 1237.62099 · doi:10.1016/j.jspi.2012.02.016 [79] LI, X. and WANG, X. (2013). Response adaptive designs with misclassified responses. Comm. Statist. Theory Methods 42 2071-2083. · Zbl 1319.62164 · doi:10.1080/03610926.2011.602488 [80] LIN, J. and BUNN, V. (2017). Comparison of multi-arm multi-stage design and adaptive randomization in platform clinical trials. Contemp. Clin. Trials 54 48-59. · doi:10.1016/j.cct.2017.01.003 [81] LITTLE, R. J. A. and RUBIN, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley Series in Probability and Statistics. Wiley Interscience, Hoboken, NJ. · Zbl 1011.62004 · doi:10.1002/9781119013563 [82] LONDON, A. J. (2018). Learning health systems, clinical equipoise and the ethics of response adaptive randomization. J. Med. Ethics 44 409-415. [83] MAGARET, A. S., JACOB, S. T., HALLORAN, M. E., GUTHRIE, K. A., MAGARET, C. A., JOHNSTON, C., SIMON, N. R. and WALD, A. (2020). Multigroup, adaptively randomized trials are advantageous for comparing coronavirus disease 2019 (Covid-19) interventions. Ann. Intern. Med. 173 576-577. · doi:10.7326/M20-2933 [84] MARSCHNER, I. C. (2021). A general framework for the analysis of adaptive experiments. Statist. Sci. 36 465-492. · Zbl 07473928 · doi:10.1214/20-STS803 [85] MCGREE, J. M., DROVANDI, C. C., THOMPSON, M. H., ECCLESTON, J. A., DUFFULL, S. B., MENGERSEN, K., PETTITT, A. N. and GOGGIN, T. (2012). Adaptive Bayesian compound designs for dose finding studies. J. Statist. Plann. Inference 142 1480-1492. · Zbl 1242.62120 · doi:10.1016/j.jspi.2011.12.029 [86] MELFI, V. F. and PAGE, C. (2000). Estimation after adaptive allocation. J. Statist. Plann. Inference 87 353-363. · Zbl 0969.62051 · doi:10.1016/S0378-3758(99)00198-6 [87] METELKINA, A. and PRONZATO, L. (2017). Information-regret compromise in covariate-adaptive treatment allocation. Ann. Statist. 45 2046-2073. · Zbl 1421.62152 · doi:10.1214/16-AOS1518 [88] Morris, T. P., White, I. R. and Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Stat. Med. 38 2074-2102. · doi:10.1002/sim.8086 [89] O’BRIEN, B., GREEN, C. E., AL-JURDI, R., CHANG, L., LIJFFIJT, M., IQBAL, S., IQBAL, T., SWANN, A. C. and MATHEW, S. J. (2019). Bayesian adaptive randomization trial of intravenous ketamine for veterans with late-life, treatment-resistant depression. Contemp. Clin. Trials Commun. 16 100432. · doi:10.1016/j.conctc.2019.100432 [90] PAPADIMITRAKOPOULOU, V., LEE, J. J., WISTUBA, I., TSAO, A., FOSSELLA, F., KALHOR, N., GUPTA, S., AVERETT BYERS, L., IZZO, J. et al. (2016). The BATTLE-2 study: A biomarker-integrated targeted therapy study in previously treated patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 34 3638-3647. [91] PITT, E. R. (2021). Optimising first in human trials. Ph.D. thesis, Univ. Bath, Bath. Available at https://purehost.bath.ac.uk/ws/portalfiles/portal/226805176/LizziPitt_final_thesis.pdf. [92] PROSCHAN, M. A. and DODD, L. E. (2019). Re-randomization tests in clinical trials. Stat. Med. 38 2292-2302. · doi:10.1002/sim.8093 [93] PROSCHAN, M. and EVANS, S. (2020). Resist the temptation of response-adaptive randomization. Clin. Infect. Dis. 71 3002-3004. [94] REMAP-CAP INVESTIGATORS (2021). Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N. Engl. J. Med. 385 1491-1502. [95] Robbins, H. (1952). Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc. 58 527-535. · Zbl 0049.37009 · doi:10.1090/S0002-9904-1952-09620-8 [96] ROBERTSON, D. S. and WASON, J. M. S. (2019). Familywise error control in multi-armed response-adaptive trials. Biometrics 75 885-894. · Zbl 1436.62623 · doi:10.1111/biom.13042 [97] ROBERTSON, D. S., CHOODARI-OSKOOEI, B., DIMAIRO, M., FLIGHT, L. and JAKI, T. (2023). Point estimation for adaptive trial designs I: A methodological review. Stat. Med. 42 122-145. · doi:10.1002/sim.9605 [98] ROBERTSON, D. S., CHOODARI-OSKOOEI, B., DIMAIRO, M., FLIGHT, L. and JAKI, T. (2023). Point estimation for adaptive trial designs II: Practical considerations and guidance. Stat. Med. · doi:10.1002/sim.9734 [99] ROSENBERGER, W. F. (2015). A conversation with Nancy Flournoy. Statist. Sci. 30 133-146. · Zbl 1332.01059 · doi:10.1214/14-STS495 [100] ROSENBERGER, W. F. and HU, F. (1999). Bootstrap methods for adaptive designs. Stat. Med. 18 1757-1767. [101] ROSENBERGER, W. F. and HU, F. (2004). Maximising power and minimizing treatment failures in clinical trials. Clin. Trials 1 141-147. [102] ROSENBERGER, W. F. and LACHIN, J. M. (2002). Randomization in Clinical Trials: Theory and Practice. Wiley Series in Probability and Statistics. Wiley Interscience, New York. · Zbl 1007.62091 · doi:10.1002/0471722103 [103] Rosenberger, W. F. and Lachin, J. M. (2016). Randomization in Clinical Trials: Theory and Practice, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ. · Zbl 1329.92004 · doi:10.1002/9781118742112 [104] ROSENBERGER, W. F. and SVERDLOV, O. (2008). Handling covariates in the design of clinical trials. Statist. Sci. 23 404-419. · Zbl 1329.62350 · doi:10.1214/08-STS269 [105] Rosenberger, W. F., Sverdlov, O. and Hu, F. (2012). Adaptive randomization for clinical trials. J. Biopharm. Statist. 22 719-736. · doi:10.1080/10543406.2012.676535 [106] ROSENBERGER, W. F., VIDYASHANKAR, A. N. and AGARWAL, D. K. (2001). Covariate-adjusted response-adaptive designs for binary response. J. Biopharm. Statist. 11 227-236. [107] ROSENBERGER, W. F., STALLARD, N., IVANOVA, A., HARPER, C. N. and RICKS, M. L. (2001). Optimal adaptive designs for binary response trials. Biometrics 57 909-913. · Zbl 1209.62181 · doi:10.1111/j.0006-341X.2001.00909.x [108] ROSNER, G. L. (2020). Bayesian adaptive design in drug development. In Bayesian Methods in Pharmaceutical Research (E. Lesaffre, G. Baio and B. Boulanger, eds.) CRC Press/CRC Press, Boca Raton, FL. [109] Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581-592. With comments by R. J. A. Little and a reply by the author. · Zbl 0344.62034 · doi:10.1093/biomet/63.3.581 [110] RYAN, E. G., DROVANDI, C. C., MCGREE, J. M. and PETTITT, A. N. (2016). A review of modern computational algorithms for Bayesian optimal design. Int. Stat. Rev. 84 128-154. · Zbl 07763475 · doi:10.1111/insr.12107 [111] SABO, R. T. (2014). Adaptive allocation for binary outcomes using decreasingly informative priors. J. Biopharm. Statist. 24 569-578. · doi:10.1080/10543406.2014.888441 [112] SAMANIEGO, F. J. (2010). A Comparison of the Bayesian and Frequentist Approaches to Estimation. Springer Series in Statistics. Springer, New York. · Zbl 1204.62028 · doi:10.1007/978-1-4419-5941-6 [113] SIMON, R. and SIMON, N. R. (2011). Using randomization tests to preserve type I error with response adaptive and covariate adaptive randomization. Statist. Probab. Lett. 81 767-772. · Zbl 1217.62191 · doi:10.1016/j.spl.2010.12.018 [114] SIU, L. L., IVY, S. P., DIXON, E. L., GRAVELL, A. E., REEVES, S. A. and ROSNER, G. L. (2017). Challenges and opportunities in adapting clinical trial design for immunotherapies. Clin. Cancer Res. 23 4950-4958. · doi:10.1158/1078-0432.CCR-16-3079 [115] STALLARD, N. and ROSENBERGER, W. F. (2020). Comparison of Bayesian and frequentist group-sequential clinical trial designs. BMC Med. Res. Methodol. 20. [116] SUGARMAN, J., DOUGLAS, C. MCCRORY, D. C., POWELL, D., KRASNY, A., ADAMS, B., BALL, E. and CASSELL, C. (1999). Empirical research on informed consent. Hastings Cent. Rep. 29(suppl) S1-S42. [117] SVERDLOV, O., ed. (2016). Modern Adaptive Randomized Clinical Trials: Statistical and Practical Aspects. Chapman & Hall/CRC Biostatistics Series. CRC Press, Boca Raton, FL. · Zbl 1316.92004 [118] SVERDLOV, O. and ROSENBERGER, W. F. (2013a). On recent advances in optimal allocation designs in clinical trials. J. Stat. Theory Pract. 7 753-773. · Zbl 1423.62151 · doi:10.1080/15598608.2013.783726 [119] SVERDLOV, O. and ROSENBERGER, W. F. (2013b). Randomization in clinical trials: Can we eliminate bias? Clin. Invest. 3 37-47. [120] TAMURA, R. N., FARIES, D. E., ANDERSEN, J. S. and HEILIGENSTEIN, J. H. (1994). A case study of an adaptive clinical trial in the treatment of out-patients with depressive disorder. J. Amer. Statist. Assoc. 89 768-776. [121] THALL, P. F. (2020). Statistical Remedies for Medical Researchers. Springer Series in Pharmaceutical Statistics. · Zbl 1435.62021 [122] THALL, P. F., FOX, P. and WATHEN, J. (2015). Statistical controversies in clinical research: Scientific and ethical problems with adaptive randomization in comparative clinical trials. Ann. Oncol. 26 1621-1628. [123] THALL, P. F., FOX, P. S. and WATHEN, J. K. (2016). Some caveats for outcome adaptive randomization in clinical trials. In Modern Adaptive Randomized Clinical Trials (O. Sverdlov, ed.). Chapman & Hall/CRC Biostat. Ser. 287-305. CRC Press, Boca Raton, FL. [124] Thall, P. F. and Wathen, J. K. (2007). Practical Bayesian adaptive randomization in clinical trials. Eur. J. Cancer 43 859-866. [125] THOMPSON, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25 285-294. · JFM 59.1159.03 [126] TORGERSON, D. J. and CAMPBELL, M. K. (2000). Use of unequal randomization to aid the economic efficiency of clinical trials. BMJ 321 759. [127] TRIPPA, L., LEE, E. Q., WEN, P. Y., BATCHELOR, T. T., CLOUGHESY, T., PARMIGIANI, G. and ALEXANDER, B. M. (2012). Bayesian adaptive trial design for patients with recurrent gliobastoma. J. Clin. Oncol. 30 3258-3263. [128] TYMOFYEYEV, Y., ROSENBERGER, W. F. and HU, F. (2007). Implementing optimal allocation in sequential binary response experiments. J. Amer. Statist. Assoc. 102 224-234. · Zbl 1284.62496 · doi:10.1198/016214506000000906 [129] U.S. FOOD AND DRUG ADMINISTRATION (2019). Adaptive designs for clinical trials of drugs and biologics. Available at https://www.fda.gov/media/78495/download. Accessed 8 March 2022. [130] VENTZ, S., PARMIGIANI, G. and TRIPPA, L. (2017). Combining Bayesian experimental designs and frequentist data analyses: Motivations and examples. Appl. Stoch. Models Bus. Ind. 33 302-313. · Zbl 1411.62331 · doi:10.1002/asmb.2249 [131] VICKERSTAFF, V., OMAR, R. and AMBLER, G. (2019). Methods to adjust for multiple comparisons in the analysis and sample size calculation of randomised controlled trials with multiple primary outcomes. BMC Med. Res. Methodol. 19 129. [132] VIELE, K., BROGLIO, K., MCGLOTHLIN, A. and SAVILLE, B. R. (2020a). Comparison of methods for control allocation in multiple arm studies using response adaptive randomization. Clin. Trials 17 52-20. [133] VIELE, K., SAVILLE, B. R., MCGLOTHLIN, A. and BROGLIO, K. (2020b). Comparison of response adaptive randomization features in multiarm clinical trials with control. Pharm. Stat. 19 602-612. [134] VILLAR, S. S., BOWDEN, J. and WASON, J. (2015). Multi-armed bandit models for the optimal design of clinical trials: Benefits and challenges. Statist. Sci. 30 199-215. · Zbl 1332.62267 · doi:10.1214/14-STS504 [135] VILLAR, S. S., BOWDEN, J. and WASON, J. (2018). Response-adaptive designs for binary responses: How to offer patient benefit while being robust to time trends? Pharm. Stat. 17 182-197. · doi:10.1002/pst.1845 [136] VILLAR, S. S., ROBERTSON, D. S. and ROSENBERGER, W. F. (2021). The temptation of overgeneralizing response-adaptive randomization. Clin. Infect. Dis. 73 e842. · doi:10.1093/cid/ciaa1027 [137] VILLAR, S. S., WASON, J. and BOWDEN, J. (2015). Response-adaptive randomization for multi-arm clinical trials using the forward looking Gittins index rule. Biometrics 71 969-978. · Zbl 1419.62465 · doi:10.1111/biom.12337 [138] WAGENMAKERS, E. J., LEE, M., LODEWYCKX, T. and IVERSON, G. (2008). Bayesian versus frequentist inference. In Bayesian Evaluation of Informative Hypotheses 181-207. Springer, New York, NY. [139] WANG, Y. and ROSENBERGER, W. F. (2020). Randomization-based interval estimation in randomized clinical trials. Stat. Med. 39 2843-2854. · doi:10.1002/sim.8577 [140] WANG, Y., ZHU, H. and LEE, J. J. (2020). Evaluation of bias for outcome adaptive randomization designs with binary endpoints. Stat. Interface 13 287-315. · Zbl 07214265 · doi:10.4310/SII.2020.v13.n3.a2 [141] WARE, J. H. (1989). Investigating therapies of potentially great benefit: ECMO. Statist. Sci. 4 298-340. With comments and a rejoinder by the author. · Zbl 0955.62638 [142] Wason, J. M. S., Brocklehurst, P. and Yap, C. (2019). When to keep it simple—adaptive designs are not always useful. BMC Med. 17 152. [143] WASON, J. M. S. and TRIPPA, L. (2014). A comparison of Bayesian adaptive randomization and multi-stage designs for multi-arm clinical trials. Stat. Med. 33 2206-2221. · doi:10.1002/sim.6086 [144] WATHEN, J. K. and THALL, P. F. (2017). A simulation study of outcome adaptive randomization in multi-arm clinical trials. Clin. Trials 14 432-440. · doi:10.1177/1740774517692302 [145] Wei, L. J. and Durham, S. (1978). The randomized play-the-winner rule in medical trials. J. Amer. Statist. Assoc. 73 840-843. · Zbl 0391.62076 [146] WILLIAMSON, S. F. and VILLAR, S. S. (2020). A response-adaptive randomization procedure for multi-armed clinical trials with normally distributed outcomes. Biometrics 76 197-209. · Zbl 1451.62147 · doi:10.1111/biom.13119 [147] WILLIAMSON, S. F., JACKO, P., VILLAR, S. S. and JAKI, T. (2017). A Bayesian adaptive design for clinical trials in rare diseases. Comput. Statist. Data Anal. 113 136-153. · Zbl 1464.62183 · doi:10.1016/j.csda.2016.09.006 [148] WOODCOCK, J. and LAVANGE, L. M. (2017). Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 377 62-70. · doi:10.1056/NEJMra1510062 [149] YUAN, Y. and YIN, G. (2011). On the usefulness of outcome adaptive randomization. J. Clin. Oncol. 29 771-776. [150] ZAGORAIOU, M. (2017). Choosing a covariate-adaptive randomization procedure in practice. J. Biopharm. Statist. 27 845-857. · doi:10.1080/10543406.2017.1289944 [151] Zelen, M. (1969). Play the winner rule and the controlled clinical trial. J. Amer. Statist. Assoc. 64 131-146. [152] ZHANG, L. and ROSENBERGER, W. F. (2006). Response-adaptive randomization for clinical trials with continuous outcomes. Biometrics 62 562-569. · Zbl 1097.62139 · doi:10.1111/j.1541-0420.2005.00496.x [153] ZHANG, L. and ROSENBERGER, W. F. (2007). Response-adaptive randomization for survival trials: The parametric approach. J. R. Stat. Soc. Ser. C. Appl. Stat. 56 153-165. · Zbl 1490.62390 · doi:10.1111/j.1467-9876.2007.00571.x [154] ZHANG, L.-X., CHAN, W. S., CHEUNG, S. H. and HU, F. (2007). A generalized drop-the-loser urn for clinical trials with delayed responses. Statist. Sinica 17 387-409 · Zbl 1145.62092 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.