×

A combinatorial construction of the Schubert polynomials. (English) Zbl 0771.05097

Let \(w=(w_ 1,w_ 2,\dots,w_ n)\) be a permutation in the symmetric group \(S_ n\). An explicit combinatorial construction of the Schubert polynomial \({\mathcal S}_ w\) is given as a sum of weights \(x^ D\) of diagrams \(D\) (finite nonempty sets of lattice points \((i,j)\) in the positive quadrant), where the sum is over the set \(\Omega(w)\) of diagrams \(D\) which are obtainable from an initial diagram \(D(w)\) by repeated application of allowable \(B\)-moves. If we view a diagram as a set of checkers (or black stones for those who prefer) distributed over the positive quadrant, then a \(B\)-move is just a move of one checker from a position to an adjacent unoccupied position subject to a set of rules, thereby obtaining a new diagram. Since the classical Schur functions can be viewed as special cases of the Schubert polynomials for appropriate choices of the permutation \(w\), it has been hoped that there was a combinatorial algorithm for constructing Schubert polynomials which extends (or is at least in analogy to) the construction of the Schur function \(S_ \lambda(x_ 1,\dots,x_ r)\) as a sum of weights of column strict tableaux of shape \(\lambda\), where \(\lambda\) is a partition. The algorithm given here is not quite an extension of the usual construction for Schur functions, however a simple bijection between \(\Omega(w)\) and the set of column strict tableaux of shape \(\lambda\) is given in the particular case where the Schubert polynomial \({\mathcal S}_ w\) is the Schur function \(S_ \lambda(x_ 1,\dots,x_ r)\). A different algorithm for constructing the general Schubert polynomial \({\mathcal S}_ w\) was conjectured (and proved when \(w\) is a vexillary permutation) by A. Kohnert [Weintrauben, Polynome, Tableaux, Bayreuther Math. Schr. 38, 1-97 (1991; Zbl 0755.05095)]. A sketch is given at the end of the paper here of how one would show the equivalence of the rule given here and that of Kohnert.

MSC:

05E05 Symmetric functions and generalizations
05A05 Permutations, words, matrices
14M15 Grassmannians, Schubert varieties, flag manifolds

Citations:

Zbl 0755.05095
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bergeron, N.; Garsia, A. M., Sergeev’s formula and the Littlewood-Richardson rule, Linear and Multilinear Algebra, 27 (1990) · Zbl 0732.05060
[2] Bernstein, I. N.; Gelfand, I. M.; Gelfand, S. I., Schubert celles and cohomology of the spaces G/P, Russian Math. Surveys, 28, 1-26 (1973) · Zbl 0289.57024
[3] Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., 7, 4, 53-58 (1974) · Zbl 0312.14009
[4] Kohnert, A., Weintrauben, polynome, tableaux, Bayreuther Math. Schriften, 38, 1-97 (1990) · Zbl 0755.05095
[5] Lascoux, A., Puissances extérieures, déterminants et cycles de Schubert, Bull. Soc. Math. France, 102, 161-179 (1974) · Zbl 0295.14024
[6] Lascoux, A., Classes de Chern des variétés de drapeaux, C.R. Acad. Sci. Paris, 295, 393-398 (1982) · Zbl 0495.14032
[7] Lascoux, A., Anneau de Grothendieck de la variété des drapeaux (1988), preprint
[8] Lascoux, A.; Schützenberger, M.-P, Polynômes de Schubert, C.R. Acad. Sci. Paris, 294, 447-450 (1982) · Zbl 0495.14031
[9] Lascoux, A.; Schützenberger, M.-P, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C.R. Acad. Sci. Paris, 295, 629-633 (1982) · Zbl 0542.14030
[10] Lascoux, A.; Schützenberger, M.-P, Symmetry and flag manifolds, (Lecture Notes in Math., Vol. 996 (1983), Springer-Verlag: Springer-Verlag New York/Berlin), 118-144
[11] Lascoux, A.; Schützenberger, M.-P, Schubert polynomials and the Littlewood-Richardson rule, Lett. Math. Phys., 10, 111-124 (1985) · Zbl 0586.20007
[12] Lascoux, A.; Schützenberger, M.-P, Interpolation de Newton à plusieurs variables, (Sém. d’Algèbre M. P. Malliavin 1983-1984. Sém. d’Algèbre M. P. Malliavin 1983-1984, Lecture Notes in Math., Vol. 1146 (1985), Springer-Verlag: Springer-Verlag New York/Berlin), 161-175 · Zbl 0584.41002
[13] Lascoux, A.; Schützenberger, M.-P, Symmetrization operators on polynomial rings, Funkt. Anal., 21, 77-78 (1987) · Zbl 0659.13008
[14] Lascoux, A.; Schützenberger, M.-P, Schubert and Grothendieck polynomials (1988), preprint
[15] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1979), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0487.20007
[16] Macdonald, I. G., Notes on Schubert Polynomials (1991), Publication du LACIM, Université du Québec à Montréal, No. 6 · Zbl 0784.05061
[17] Wachs, M. L., Flagged Schur functions, Schubert polynomials and symmetrizing operators, J. Combin. Theory Ser. A, 40, 276-289 (1985) · Zbl 0579.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.