zbMATH — the first resource for mathematics

On the completion of cyclically ordered groups. (English) Zbl 0771.06007
Summary: We present a new construction of the completion \(M(G)\) of the cyclically ordered group \(G\). The results concerning the completion of a linearly ordered group by Dedekind cuts are applied.
06F15 Ordered groups
20F60 Ordered groups (group-theoretic aspects)
Full Text: EuDML
[1] ČECH E.: Bodové množiny. Praha 1936.
[2] EVERETT C. J.: Sequence completion of lattice modules. Duke Math. J., 11, 1944, 109-119. · Zbl 0060.06301 · doi:10.1215/S0012-7094-44-01112-9
[3] ФУКС Л.: Частично упорядоченные алгебраические системы. Москва 1965. · Zbl 1241.70029
[4] JAKUBÍK J., ČERNÁK Š.: Completion of a cyclically ordered group. Czech. Math. J. 37, 1987, 157-174. · Zbl 0624.06021
[5] NOVÁK V.: Cuts in cyclically ordered sets. Czech. Math. J” 34, 1984, 322-333. · Zbl 0551.06002 · eudml:13455
[6] NOVÁK V., NOVOTNÝ M.: On completion of cyclically ordered sets. Czech. Math. J., 37, 1987, 407-414. · Zbl 0636.06004 · eudml:13652
[7] RIEGER L.: O uspořádaných a cyklicky uspořádaných grupách I-III. Věstník král. české spol. nauk, 1946, 1-31; 1947, 1-33; 1948, 1-26.
[8] SWIERCZKOVSKI S.: On cyclically ordered groups. Fund. Math. 47, 1959, 161-166. · Zbl 0096.01501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.