×

Scaling limits for a class of regular \(\Xi\)-coalescents. (English) Zbl 1518.60086

Summary: Let \(N_t^{(n)}\) denote the number of blocks in a \(\Xi\)-coalescent restricted to a sample of size \(n\in\mathbb{N}\) after time \(t\geq 0\). Under the assumption of a certain curvature condition on a function well-known from the literature, we prove the existence of sequences \((v(n,t))_{n\in\mathbb{N}}\) for which \((\log N_t^{(n)}-\log v(n,t))_{t\geq 0}\) converges to an Ornstein-Uhlenbeck type process as \(n\to\infty\). The curvature condition is intrinsically related to the behavior of \(\Xi\) near the origin. The method of proof is to show the uniform convergence of the associated generators. Via Siegmund duality an analogous result for the fixation line is proven. Several examples are studied.

MSC:

60J90 Coalescent processes
60J27 Continuous-time Markov processes on discrete state spaces
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), Dover: Dover New York, MR0167642 · Zbl 0171.38503
[2] Baur, E.; Bertoin, J., The fragmentation process of an infinite recursive tree and Ornstein-Uhlenbeck type processes, Electron. J. Probab., 20, 98, 20 (2015), MR3399834 · Zbl 1333.60186
[3] Berestycki, J.; Berestycki, N.; Limic, V., The \(\Lambda \)-coalescent speed of coming down from infinity, Ann. Probab., 38, 1, 207-233 (2010), MR2599198 · Zbl 1247.60110
[4] Berestycki, J.; Berestycki, N.; Limic, V., A small-time coupling between \(\Lambda \)-coalescents and branching processes, Ann. Appl. Probab., 24, 2, 449-475 (2014), MR3178488 · Zbl 1303.60066
[5] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation (1989), Cambridge University Press, MR1015093 · Zbl 0667.26003
[6] Bogachev, V. I.; Röckner, M.; Schmuland, B., Generalized Mehler semigroups and applications, Probab. Theory Related Fields, 105, 2, 193-225 (1996), MR1392452 · Zbl 0849.60066
[7] de Branges, L., The Stone-Weierstrass theorem, Proc. Amer. Math. Soc., 10, 5, 822-824 (1959), MR0113131 · Zbl 0092.11801
[8] Cannings, C., The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid Models. Adv. Appl. Probab., 6, 2, 260-290 (1974), MR0343949 · Zbl 0284.60064
[9] Cannings, C., The latent roots of certain Markov chains arising in genetics: a new approach, II. Further Haploid Models. Adv. Appl. Probab., 7, 2, 264-282 (1975), MR0371430 · Zbl 0339.60067
[10] Diehl, C.; Kersting, G., External branch lengths of \(\Lambda \)-coalescents without a dust component, Electron. J. Probab., 24, 134, 36 (2019), MR4040994 · Zbl 1427.60180
[11] Diehl, C.; Kersting, G., Tree lengths for general \(\Lambda \)-coalescents and the asymptotic site frequency spectrum around the Bolthausen-Sznitman coalescent, Ann. Appl. Probab., 29, 5, 2700-2743 (2019), MR4019873 · Zbl 1475.60159
[12] Duhalde, X.; Foucart, C.; Ma, C., On the hitting times of continuous-state branching processes with immigration, Stochastic Process. Appl., 124, 12, 4182-4201 (2014), MR3264444 · Zbl 1323.60116
[13] Ethier, S. N.; Kurtz, T. G., Markov Processes, Characterization and Convergence (1986), Wiley., MR0838085 · Zbl 0592.60049
[14] Foucart, C.; Ma, C.; Mallein, B., Coalescences in continuous-state branching processes, Electron. J. Probab., 24, Paper (103), 52 (2019), MR4017121 · Zbl 1427.60177
[15] Freund, F.; M. Möhle, M., On the number of allelic types for samples taken from exchangeable coalescents with mutation, Adv. in Appl. Probab., 41, 4, 1082-1101 (2009), MR2663237 · Zbl 1202.92061
[16] Gaiser, F.; Möhle, M., On the block counting process and the fixation line of exchangeable coalescents, ALEA Lat. Am. J. Probab. Math. Stat., 13, 2, 809-833 (2016), MR3546382 · Zbl 1346.60124
[17] Gnedin, A.; Hansen, B.; Pitman, J., Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws, Probab. Surv., 4, 146-171 (2007), MR2318403 · Zbl 1189.60050
[18] Goldschmidt, C.; Martin, J. B., Random recursive trees and the Bolthausen-Sznitman coalescent, Electron. J. Probab., 10, 21, 718-745 (2005), MR2164028 · Zbl 1109.60060
[19] Grey, D. R., Asymptotic behaviour of continuous time, continuous state-space branching processes, J. Appl. Probab., 11, 4, 669-677 (1974), MR0408016 · Zbl 0301.60060
[20] Hénard, O., The fixation line in the \(\Lambda \)-coalescent, Ann. Appl. Probab., 25, 5, 3007-3032 (2015), MR3375893 · Zbl 1325.60124
[21] Herriger, P.; Möhle, M., Conditions for exchangeable coalescents to come down from infinity, ALEA Lat. Am. J. Probab. Math. Stat., 9, 2, 637-665 (2012), MR3069379 · Zbl 1277.60122
[22] Janson, S., Rounding of continuous random variables and oscillatory asymptotics, Ann. Probab., 34, 5, 1807-1826 (2006), MR2271483 · Zbl 1113.60017
[23] Lamperti, J., An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc., 88, 380-387 (1958), MR0094863 · Zbl 0228.60046
[24] Limic, V., On the speed of coming down from infinity for \(\Xi \)-coalescent processes, Electron. J. Probab., 15, 8, 217-240 (2010), MR2594877 · Zbl 1203.60111
[25] Limic, V.; Talarczyk, A., Second order asymptotics for the block counting process in a class of regularly varying \(\Lambda \)-coalescents, Ann. Probab., 43, 3, 1419-1455 (2015), MR3342667 · Zbl 1327.60143
[26] Möhle, M., Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent, Stochastic Process. Appl., 120, 11, 2159-2173 (2010), MR2684740 · Zbl 1214.60037
[27] Möhle, M., The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent, ALEA Lat. Am. J. Probab. Math. Stat., 12, 1, 35-53 (2015), MR3333734 · Zbl 1329.60271
[28] Möhle, M., Hitting probabilities for the Greenwood model and relations to near constancy oscillation, Bernoulli, 24, 1, 316-332 (2018), MR3706759 · Zbl 1391.60214
[29] Möhle, M., The rate of convergence of the block counting process of exchangeable coalescents with dust, ALEA Lat. Am. J. Probab. Math. Stat., 18, 2, 1195-1220 (2021), MR4282186 · Zbl 1477.60050
[30] Möhle, M.; Sagitov, S., A classification of coalescent processes for haploid exchangeable population models, Ann. Probab., 29, 4, 1547-1562 (2001), MR1880231 · Zbl 1013.92029
[31] Möhle, M.; Vetter, B., Scaling limits for the block counting process and the fixation line for a class of \(\Lambda \)-coalescents, ALEA Lat. Am. J. Probab. Math. Stat., 19, 1, 641-664 (2022), MR4419194 · Zbl 1494.60089
[32] Parthasarathy, K. R., Probability Measures on Metric Spaces (1967), Academic Press: Academic Press New York, MR0226684 · Zbl 0153.19101
[33] Sato, K.; Yamazato, M., Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stoch. Process. Appl., 17, 1, 73-100 (1984), MR0738769 · Zbl 0533.60021
[34] Schweinsberg, J., Coalescents with simultaneous multiple collisions, Electron. J. Probab., 5, 12, 1-50 (2000), MR1781024 · Zbl 0959.60065
[35] Siegmund, D., The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes, Ann. Probab., 4, 6, 914-924 (1976), MR0431386 · Zbl 0364.60109
[36] Silverstein, M. L., A new approach to local times, J. Math. Mech., 17, 11, 1023-1054 (1968), MR0226734 · Zbl 0184.41101
[37] Silverstein, M. L., Continuous state branching semigroups, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 14, 96-112 (1969), MR0266321 · Zbl 0209.48803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.