Zémor, Gilles Subset sums in binary spaces. (English) Zbl 0772.11004 Eur. J. Comb. 13, No. 3, 221-230 (1992). Sei \(G=Z_ 2^ L\) die Gruppe der binären Vektoren der Länge \(L\). Dann zeigt Verf. den folgenden Satz (Theorem 1.4): Sei \(S\) eine Teilmenge von \(G\) und \(k\in\mathbb{N}_ 0\). Dann gilt entweder (i) es gibt eine echte Untergruppe \(H\) von \(G\), so daß \(| S+H|-| S|<| H|+k\) oder (ii) für jede Teilmenge \(T\) von \(G\) mit \(k\leq| T|^ 2-2\) und \(2\leq| G|-| S+T|\) gilt \(| S+T|\geq | S|+| T|+k\). Am Schluß wird auf zwei Anwendungen hingewiesen. Reviewer: E.Härtter (Mainz) Cited in 5 Documents MSC: 11B05 Density, gaps, topology 20D60 Arithmetic and combinatorial problems involving abstract finite groups 20K01 Finite abelian groups Keywords:sum sets; lower bound; cardinality; sets of binary vectors of given length; abelian group; Kneser’s theorem × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Alon, N., Subset sums, J. Number Theory, 27, 2, 196-205 (1987) · Zbl 0622.10042 [2] Cohen, G.; Ze´mor, G., An application of combinatorial theory to coding, Ars Combin., 23A, 84-94 (1987) [3] Deza, M., Racine minimum d’un groupee´le´mentaire abe´lien, Can. J. Math., XXVII, 4, 819-826 (1975) · Zbl 0308.20045 [4] Diderrich, G. T., On Kneser’s addition theorems in groups, (Proc. Am. Math. Soc., 38 (1973)), 443-451, (3) · Zbl 0266.20041 [5] Eggleton, R. B.; Erdo¨s, P., Two combinatorial problems in group theory, Acta Arith., XXI, 111-116 (1972) · Zbl 0248.20068 [6] Hamidoune, Y. O., Sur la se´paration dans les graphes de Cayley abe´liens, Discr. Math., 55, 323-326 (1985) · Zbl 0567.05027 [7] Harper, L. H., Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory, 1, 385-393 (1966) · Zbl 0158.20802 [8] Kneser, M., Abscha¨tzung der asymptotischen Dichte von Summenmengen, Math. Z., 58, 549 (1953) · Zbl 0051.28104 [9] Mann, H. B., (Addition Theorems: The Addition Theorems of Group Theory and Number Theory (1965), Interscience: Interscience New York) · Zbl 0127.27203 [10] Mann, H. B.; Olson, J. E., Sums of sets in the elementary abelian group of type (p, p), J. Combin. Theory, 2, 275-284 (1967) · Zbl 0168.01501 [11] Olson, J. E., An addition theorem mod \(p\), J. Combin. Theory, 5, 45-52 (1968) · Zbl 0174.05202 [12] Olson, J. E., An addition theorem for finite abelian groups, J. Number Theory, 9, 1, 63-70 (1977) · Zbl 0351.20032 [13] Olson, J. E., A problem of Erdo¨s on abelian groups, Combinatorica, 7, 3, 285-289 (1987) · Zbl 0643.20031 [14] Ze´mor, G., Proble“mes combinatoires lie´sa‘l”e´criture sur des me´moires, (doctoral dissertation (November 1989), Ecole Nationale Supe´rieure des Te´le´communications) [15] Ze´mor, G., An extremal problem related to the covering radius of binary codes, (First French-Soviet Workshop on Algebraic Coding, Proceedings. First French-Soviet Workshop on Algebraic Coding, Proceedings, Lecture Notes in Computer Science 573 (1992), Springer-Verlag) · Zbl 0859.94032 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.